Issues

 / 

2008

 / 

August

  

Methodological notes


Renormalization-group symmetries for solutions of nonlinear boundary value problems

 a,  b
a Institute of Mathematical Modelling, Russian Academy of Sciences, Miusskya pl. 4a, Moscow, 125047, Russian Federation
b Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, 141980, Russian Federation

About 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper draws on lectures delivered at the XIII School for Nonlinear Waves, Nizhnii Novgorod, Russia, 1 — 7 March 2006 [see V F Kovalev, D V Shirkov “Renormalization group symmetry for solutions of boundary value problems” in Nonlinear Waves 2006 (Ed. by A V Gaponov-Grekhov) (N. Novgorod: IAP RAS, 2007) p. 433] to describe the logical framework of a new algorithm based on the modern theory of transformation groups and to present the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytic solutions obtained with this algorithm have allowed describing the singularity structure for self-focusing of a laser beam in a nonlinear medium, studying generation of harmonics in weakly inhomogeneous plasma, and investigating the energy spectra of accelerated ions in expanding plasma bunches.

Fulltext pdf (308 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n08ABEH006590
PACS: 02.30.Jr, 11.10.Hi, 42.65.−k (all)
DOI: 10.1070/PU2008v051n08ABEH006590
URL: https://ufn.ru/en/articles/2008/8/c/
000261856600003
2-s2.0-57549113455
2008PhyU...51..815K
Citation: Kovalev V F, Shirkov D V "Renormalization-group symmetries for solutions of nonlinear boundary value problems" Phys. Usp. 51 815–830 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ковалев В Ф, Ширков Д В «Ренормгрупповые симметрии для решений нелинейных краевых задач» УФН 178 849–865 (2008); DOI: 10.3367/UFNr.0178.200808d.0849

References (60) Cited by (26) Similar articles (20) ↓

  1. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  2. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefromPhys. Usp. 36 (2) 81–93 (1993)
  3. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  4. A.N. Oraevskii “Superluminal waves in amplifying mediaPhys. Usp. 41 1199–1209 (1998)
  5. V.S. Zapasskii “On electromagnetically induced transparency in the degenerate Λ-schemePhys. Usp. 52 179–181 (2009)
  6. V.P. Silin, P.V. Silin “Bifurcation properties of the bremsstrahlung harmonics generated by a pumping field in plasmasPhys. Usp. 50 729–740 (2007)
  7. B.Ya. Zel’dovich, M.J. Soileau “Bi-frequency pendulum on a rotary platform: modeling various optical phenomenaPhys. Usp. 47 1239–1255 (2004)
  8. S.V. Sazonov “Superluminal electromagnetic solitons in nonequilibrium mediaPhys. Usp. 44 631–644 (2001)
  9. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  10. V.P. Bykov “Basic properties of squeezed lightSov. Phys. Usp. 34 (10) 910–924 (1991)
  11. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffractionPhys. Usp. 45 553–559 (2002)
  12. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experimentPhys. Usp. 52 235–255 (2009)
  13. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and applicationPhys. Usp. 53 91–98 (2010)
  14. S.V. Vladimirov, Yu.O. Tyshetskiy “On description of a collisionless quantum plasmaPhys. Usp. 54 1243–1256 (2011)
  15. A.V. Burenin “Symmetry of quantum intramolecular dynamicsPhys. Usp. 45 753–776 (2002)
  16. M.V. Kuzelev, A.A. Rukhadze “On the quantum description of the linear kinetics of a collisionless plasmaPhys. Usp. 42 603–605 (1999)
  17. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wavePhys. Usp. 61 307–312 (2018)
  18. G.A. Martynov “Nonequilibrium statistical mechanics, transport equations, and the second law of thermodynamicsPhys. Usp. 39 1045–1070 (1996)
  19. S.P. Efimov “Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problemPhys. Usp. 65 952–967 (2022)
  20. V.I. Alshits, V.N. Lyubimov “Plasmon-polariton at the interface of a uniaxial crystal and a metal: real dispersion equation and its analysisPhys. Usp. 66 90–102 (2023)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions