Issues

 / 

2008

 / 

August

  

Methodological notes


Renormalization-group symmetries for solutions of nonlinear boundary value problems

 a,  b
a Institute of Mathematical Modelling, Russian Academy of Sciences, Miusskya pl. 4a, Moscow, 125047, Russian Federation
b Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, 141980, Russian Federation

About 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper draws on lectures delivered at the XIII School for Nonlinear Waves, Nizhnii Novgorod, Russia, 1 — 7 March 2006 [see V F Kovalev, D V Shirkov “Renormalization group symmetry for solutions of boundary value problems” in Nonlinear Waves 2006 (Ed. by A V Gaponov-Grekhov) (N. Novgorod: IAP RAS, 2007) p. 433] to describe the logical framework of a new algorithm based on the modern theory of transformation groups and to present the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytic solutions obtained with this algorithm have allowed describing the singularity structure for self-focusing of a laser beam in a nonlinear medium, studying generation of harmonics in weakly inhomogeneous plasma, and investigating the energy spectra of accelerated ions in expanding plasma bunches.

Fulltext pdf (308 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n08ABEH006590
PACS: 02.30.Jr, 11.10.Hi, 42.65.−k (all)
DOI: 10.1070/PU2008v051n08ABEH006590
URL: https://ufn.ru/en/articles/2008/8/c/
000261856600003
2-s2.0-57549113455
2008PhyU...51..815K
Citation: Kovalev V F, Shirkov D V "Renormalization-group symmetries for solutions of nonlinear boundary value problems" Phys. Usp. 51 815–830 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Êîâàëåâ Â Ô, Øèðêîâ Ä Â «Ðåíîðìãðóïïîâûå ñèììåòðèè äëÿ ðåøåíèé íåëèíåéíûõ êðàåâûõ çàäà÷» ÓÔÍ 178 849–865 (2008); DOI: 10.3367/UFNr.0178.200808d.0849

References (60) Cited by (26) ↓ Similar articles (20)

  1. Kataev A  L, Stepanyantz K  V Int. J. Mod. Phys. A (2024)
  2. Metelskii I I, Kovalev V F, Bychenkov V Yu Uspekhi Fizicheskikh Nauk 194 457 (2024)
  3. [Metelskii I I, Kovalev V F, Bychenkov V Yu Phys. Usp. 67 429 (2024)]
  4. Kovalev V F JNMP 18 163 (2021)
  5. Kovalev V F Symmetries and Applications of Differential Equations Nonlinear Physical Science Chapter 1 (2021) p. 1
  6. Bychenkov V Yu, Kovalev V F Radiophys Quantum El 63 742 (2021)
  7. Metelskii I I, Kovalev V F, Bychenkov V Yu 26 (11) (2019)
  8. Kovalev V F, Bychenkov V Yu Phys. Rev. E 99 (4) (2019)
  9. Kovalev V F, Bychenkov V Yu Jetp Lett. 107 458 (2018)
  10. Konyukhov V K, Stepanov E V, Borisov S K Laser Phys. 28 055602 (2018)
  11. Kovalev V I Laser Phys. Lett. 14 015401 (2017)
  12. Metelskii I I, Kovalev V F, Bychenkov V Yu Plasma Phys. Rep. 43 175 (2017)
  13. Metelskii I I, Kovalev V F, Bychenkov V Yu Bull. Lebedev Phys. Inst. 43 16 (2016)
  14. Kovalev V I Frontiers in Optics 2016, (2016) p. FF1H.7
  15. Bychenkov V Yu, Brantov A V et al Uspekhi Fizicheskikh Nauk 185 77 (2015) [Bychenkov V Yu, Brantov A V et al Phys.-Usp. 58 71 (2015)]
  16. Chirkunov Yu A 56 (10) (2015)
  17. Kovalev V F, Bychenkov V Yu J. Exp. Theor. Phys. 121 1 (2015)
  18. Chirkunov Yu A J. Phys. A: Math. Theor. 48 395501 (2015)
  19. Chirkunov Yu A, Nazarenko S V et al J. Phys. A: Math. Theor. 47 185501 (2014)
  20. Kovalev V F, Rudenko O V Acoust. Phys. 58 269 (2012)
  21. Kovalev V F, Popov K I, Bychenkov V Yu J. Exp. Theor. Phys. 114 25 (2012)
  22. Mitri F G Ultrasonics 51 496 (2011)
  23. Banerjee D, Bhattacharjee Ja K 78 142 (2010)
  24. Banerjee D, Bhattacharjee Ja K J. Phys. A: Math. Theor. 43 062001 (2010)
  25. Grigoriev Yu N, Ibragimov N H et al Lecture Notes In Physics Vol. Symmetries of Integro-Differential EquationsPlasma Kinetic Theory: Vlasov–Maxwell and Related Equations806 Chapter 4 (2010) p. 145
  26. Rogovtsov N N Light Scattering Reviews 5 Chapter 7 (2010) p. 249

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions