Issues

 / 

2008

 / 

July

  

Methodological notes


Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The asymmetry of the relativistic addition law for noncollinear velocities under the velocity permutation leads to two modified triangles on a Euclidean plane depicting the addition of unpermuted and permuted velocities and the appearance of a nonzero angle $\omega$ between two resulting velocities. Aparticle spin rotates through the same angle $\omega$ under a Lorentz boost with a velocity noncollinear to the particle velocity. Three mutually connected three-parameter representations of the angle $\omega$, obtained by the author earlier, express the three-parameter symmetry of the sides and angles of two Euclidean triangles identical to the sine and cosine theorems for the sides and angles of a single geodesic triangle on the surface of a pseudosphere. Namely, all three representations of the angle $\omega$, after a transformation of one of them, coincide with the representations of the area of a pseudospherical triangle expressed in terms of any two of its sides and the angle between them. The angle $\omega$ is also symmetrically expressed in terms of three angles or three sides of a geodesic triangle, and therefore it is an invariant of the group of triangle motions over the pseudo-sphere surface, the group that includes the Lorentz group. Although the pseudospheres in Euclidean and pseudo-Euclidean spaces are locally isometric, only the latter is isometric to the entire Lobachevsky plane and forms a homogeneous isotropic curved 4-velocity space in the flat Minkowski space. In this connection, relativistic physical processes that may be related to the pseudosphere in Euclidean space are especially interesting.

Fulltext pdf (258 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n07ABEH006631
PACS: 03.30.+p, 02.40.Ky (all)
DOI: 10.1070/PU2008v051n07ABEH006631
URL: https://ufn.ru/en/articles/2008/7/d/
000260580700004
2-s2.0-55749106420
2008PhyU...51..709R
Citation: Ritus V I "Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry" Phys. Usp. 51 709–721 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ритус В И «Асимметрия релятивистского закона сложения скоростей относительно их перестановки и неевклидова геометрия» УФН 178 739–752 (2008); DOI: 10.3367/UFNr.0178.200807d.0739

References (16) Cited by (3) Similar articles (20) ↓

  1. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precessionPhys. Usp. 50 95–101 (2007)
  2. G.B. Malykin “The Sagnac effect: correct and incorrect explanationsPhys. Usp. 43 1229 (2000)
  3. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving bodyPhys. Usp. 42 505–509 (1999)
  4. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coinPhys. Usp. 52 821–829 (2009)
  5. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at restPhys. Usp. 63 601–610 (2020)
  6. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effectPhys. Usp. 41 941–944 (1998)
  7. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  8. G.B. Malykin, V.I. Pozdnyakova “Geometric phases in singlemode fiber lightguides and fiber ring interferometersPhys. Usp. 47 289–308 (2004)
  9. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  10. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  11. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativityPhys. Usp. 46 1099–1103 (2003)
  12. V.B. Morozov “On the question of the electromagnetic momentum of a charged bodyPhys. Usp. 54 371–374 (2011)
  13. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  14. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of massesPhys. Usp. 55 1232–1238 (2012)
  15. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodiesSov. Phys. Usp. 19 273–274 (1976)
  16. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformationPhys. Usp. 54 529–532 (2011)
  17. V.A. Aleshkevich “On special relativity teaching using modern experimental dataPhys. Usp. 55 1214–1231 (2012)
  18. J. Gaite “The relativistic virial theorem and scale invariancePhys. Usp. 56 919–931 (2013)
  19. A.A. Logunov “The relativistic theory of gravitationSov. Phys. Usp. 33 (8) 663–668 (1990)
  20. G.B. Malykin “Para-Lorentz transformationsPhys. Usp. 52 263–266 (2009)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions