Issues

 / 

2008

 / 

July

  

Methodological notes


Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The asymmetry of the relativistic addition law for noncollinear velocities under the velocity permutation leads to two modified triangles on a Euclidean plane depicting the addition of unpermuted and permuted velocities and the appearance of a nonzero angle $\omega$ between two resulting velocities. Aparticle spin rotates through the same angle $\omega$ under a Lorentz boost with a velocity noncollinear to the particle velocity. Three mutually connected three-parameter representations of the angle $\omega$, obtained by the author earlier, express the three-parameter symmetry of the sides and angles of two Euclidean triangles identical to the sine and cosine theorems for the sides and angles of a single geodesic triangle on the surface of a pseudosphere. Namely, all three representations of the angle $\omega$, after a transformation of one of them, coincide with the representations of the area of a pseudospherical triangle expressed in terms of any two of its sides and the angle between them. The angle $\omega$ is also symmetrically expressed in terms of three angles or three sides of a geodesic triangle, and therefore it is an invariant of the group of triangle motions over the pseudo-sphere surface, the group that includes the Lorentz group. Although the pseudospheres in Euclidean and pseudo-Euclidean spaces are locally isometric, only the latter is isometric to the entire Lobachevsky plane and forms a homogeneous isotropic curved 4-velocity space in the flat Minkowski space. In this connection, relativistic physical processes that may be related to the pseudosphere in Euclidean space are especially interesting.

Fulltext pdf (258 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n07ABEH006631
PACS: 03.30.+p, 02.40.Ky (all)
DOI: 10.1070/PU2008v051n07ABEH006631
URL: https://ufn.ru/en/articles/2008/7/d/
000260580700004
2-s2.0-55749106420
2008PhyU...51..709R
Citation: Ritus V I "Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry" Phys. Usp. 51 709–721 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ритус В И «Асимметрия релятивистского закона сложения скоростей относительно их перестановки и неевклидова геометрия» УФН 178 739–752 (2008); DOI: 10.3367/UFNr.0178.200807d.0739

References (16) ↓ Cited by (3) Similar articles (20)

  1. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1988); Translated into English, Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Pergamon Press, 1983)
  2. Møller C The Theory Of Relativity 2nd ed. (London: Oxford Univ. Press, 1972); Meller K Teoriya Otnositel’nosti 2-e izd. (M.: Atomizdat, 1975)
  3. Ritus V I Usp. Fiz. Nauk 177 105 (2007); Ritus V I Phys. Usp. 50 95 (2007)
  4. Wigner E P Helv. Phys. Acta (Suppl. IV) 210 (1956)
  5. Wigner E P Rev. Mod. Phys. 29 255 (1957)
  6. Stapp H P Phys. Rev. 103 425 (1956)
  7. Ritus V I Zh. Eksp. Teor. Fiz. 40 352 (1961); Ritus V I Sov. Phys. JETP 13 240 (1961)
  8. Efimov N V Vysshaya Geometriya (M.-L.: Gostekhizdat, 1945); Translated into English, Efimov N V Higher Geometry (Moscow: Mir Publ., 1980)
  9. Logunov A A Lektsii Po Teorii Otnositel’nosti (M.: Nauka, 2002)
  10. Kagan V F Osnovaniya Geometrii Ch. II (M.: GITTL, 1956)
  11. Dubrovin B A, Novikov S P, Fomenko A T Sovremennaya Geometriya : Metody i Prilozheniya 2-e izd. (M.: Nauka, 1986); Translated into English, Dubrovin B A, Fomenko A T, Novikov S P Modern Geometry : Methods And Applications 2nd ed. (New York: Springer-Verlag, 1992)
  12. Weinberg S Gravitation And Cosmology (New York: Wiley, 1972); Veinberg S Gravitatsiya i Kosmologiya (M.: Mir, 1975)
  13. Hilbert D Grundlagen Der Geometrie (Leipzig: B.G. Teubner, 1930); Translated into English, Hilbert D Foundations Of Geometry (Peru, Ill.: Open Court Publ. Co., 1971); Gil’bert D Osnovaniya Geometrii Dobavlenie V (M.: Gostekhizdat, 1948)
  14. Poznyak E G, Shikin E V Differentsial’naya Geometriya (M.: Izd-vo MGU, 1990)
  15. Zakharov V E, Manakov S V, Novikov S P, Pitaevskii L P Teoriya Solitonov: Metod Obratnoi Zadachi (M.: Nauka, 1980); Translated into English, Novikov S, Manakov S V, Pitaevskii L P, Zakharov V E Theory Of Solitons: The Inverse Scattering Method (Contemporary Soviet Mathematics) (New York: Consultants Bureau, 1984)
  16. Rajaraman R Solitons And Instantons (Amsterdam: North-Holland, 1982); Radzharaman R Solitony i Instantony v Kvantovoi Teorii Polya (M.: Mir, 1985)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions