Issues

 / 

2008

 / 

June

  

Methodological notes


Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides


International Laser Center of M.V. Lomonosov Moscow State University, Vorobevy gory, Moscow, 119992, Russian Federation

Wave-theory arguments often used to explain colors of thin films are applied to derive simple, physically instructive relations providing a quantitative understanding of transmission spectra of hollow optical waveguides with a complex structure of the cladding. Antiresonant phenomena in complicated optical waveguide systems are shown to weaken the coupling between certain groups of waveguide modes, suggesting ways to substantially reduce optical loss and radically improve the beam quality of radiation transmitted through hollow waveguides. It has been revealed that the presence of a single Fabry-Perot type antiresonant layer in a waveguide cladding considerably lowers the waveguide loss and enhances the suppression of high-order waveguide modes relative to standard, capillary waveguides with a solid cladding. Transmission of optical signals over large distances, however, requires waveguides with a periodically structured antiresonant cladding. The loss in such waveguides exponentially decreases, while the efficiency of high-order mode suppression exponentially increases with the growth in the number of structure periods in the waveguide cladding.

Fulltext pdf (535 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n06ABEH006448
PACS: 42.65.Dr, 42.65.Ky, 42.65.Re, 42.65.Wi (all)
DOI: 10.1070/PU2008v051n06ABEH006448
URL: https://ufn.ru/en/articles/2008/6/d/
000260064600004
2-s2.0-53849136900
2008PhyU...51..591Z
Citation: Zheltikov A M "Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides" Phys. Usp. 51 591–600 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Желтиков А М «Цвета тонких пленок, антирезонансные явления в оптических системах и предельные потери собственных мод полых световодов» УФН 178 619–629 (2008); DOI: 10.3367/UFNr.0178.200806d.0619

References (85) ↓ Cited by (29) Similar articles (10)

  1. Hooke R Micrographia: Or, Some Physiological Descriptions Of Minute Bodies Made By Magnifying Glasses (London: J. Martyn and J. Allestry, 1665)
  2. Newton I Optics: Or, A Treatise Of The Reflections, Refractions, Inflections And Colours Of Light (London: Smith and Walford, 1704)
  3. Perot A, Fabry C Ann. Chim. Phys. 16 289 (1899)
  4. Michelson A A Philos. Mag. 13 236 (1882)
  5. Fizeau A H C.R. Acad. Sci. 66 934 (1868)
  6. Rayleigh J W Philos. Mag. 28 200 (1889)
  7. Rayleigh J W In Encyclopedia Britannica 9th ed. (New York, 1888)
  8. Knight J C et al. Science 282 1476 (1998)
  9. Russell P Science 299 358 (2003)
  10. Knight J C Nature 424 847 (2003)
  11. Zheltikov A M Usp. Fiz. Nauk 170 1203 (2000); Zheltikov A M Phys. Usp. 43 1125 (2000)
  12. Zheltikov A M Optika Mikrostrukturirovannykh Volokon (M.: Nauka, 2004)
  13. Russell P St J J. Lightwave Technol. 24 4729 (2006)
  14. Zheltikov A M Usp. Fiz. Nauk 177 737 (2007); Zheltikov A M Phys. Usp. 50 705 (2007)
  15. Reeves W H et al. Nature 424 511 (2003)
  16. Fedotov A B, Zheltikov A M, Tarasevitch A P, von der Linde D Appl. Phys. B 73 181 (2001)
  17. Zheltikov A M Usp. Fiz. Nauk 174 73 (2004); Zheltikov A M Phys. Usp. 47 69 (2004)
  18. Ranka J K, Windeler R S, Stentz A J Opt. Lett. 25 796 (2000)
  19. Zheltikov A M (Ed.) "Supercontinuum Generation" Appl. Phys. B 77 (Special Iss., 2/3) (2003)
  20. Zheltikov A M Usp. Fiz. Nauk 176 623 (2006); Zheltikov A M Phys. Usp. 49 605 (2006)
  21. Dudley J M, Genty G, Coen S Rev. Mod. Phys. 78 1135 (2006)
  22. Jones D J et al. Science 288 635 (2000)
  23. Holzwarth R et al. Phys. Rev. Lett. 85 2264 (2000)
  24. Diddams S A et al. Phys. Rev. Lett. 84 5102 (2000)
  25. Udem Th, Holzwarth R, Hänsch T W Nature 416 233 (2002)
  26. Serebryannikov E E et al. Phys. Rev. E 72 056603 (2005)
  27. Hartl I et al. Opt. Lett. 26 608 (2001)
  28. Konorov S O et al. Phys. Rev. E 70 057601 (2004)
  29. Ivanov A A, Alfimov M V, Zheltikov A M Opt. Lett. 31 3330 (2006)
  30. Sidorov-Biryukov D A, Serebryannikov E E, Zheltikov A M Opt. Lett. 31 2323 (2006)
  31. Paulsen H N et al. Opt. Lett. 28 1123 (2003)
  32. Kano H, Hamaguchi H Opt. Express 13 1322 (2005)
  33. Andresen E R et al. J. Opt. Soc. Am. B 22 1934 (2005)
  34. von Vacano B, Wohlleben W, Motzkus M Opt. Lett. 31 413 (2006)
  35. Quigley G R, Harris R D, Wilkinson J S Appl. Opt. 38 6036 (1999)
  36. Prieto F et al. J. Lightwave Technol. 19 75 (2001)
  37. Monro T M et al. Meas. Sci. Technol. 12 854 (2001)
  38. Myaing M T et al. Opt. Lett. 28 1224 (2003)
  39. Konorov S, Zheltikov A, Scalora M Opt. Express 13 3454 (2005)
  40. Rindorf L et al. Opt. Express 14 8224 (2006)
  41. Cregan R F et al. Science 285 1537 (1999)
  42. Konorov S O i dr. Pis’ma ZhETF 76 401 (2002); Konorov S O et al. JETP Lett. 76 341 (2002)
  43. Smith C M et al. Nature 424 657 (2003)
  44. Zheltikov A M Usp. Fiz. Nauk 174 1301 (2004); Zheltikov A M Phys. Usp. 47 1205 (2004)
  45. Konorov S O et al. Appl. Opt. 43 2251 (2004)
  46. Konorov S O et al. J. Phys. D: Appl. Phys. 36 1375 (2003)
  47. Ouzounov D G et al. Science 301 1702 (2003)
  48. Ouzounov D G et al. Opt. Express 13 6153 (2005)
  49. Bessonov A D, Zheltikov A M Phys. Rev. E 73 066618 (2006)
  50. Serebryannikov E E, Zheltikov A M Phys. Rev. A 76 013820 (2007)
  51. Konorov S O et al. Phys. Rev. E 70 066625 (2004)
  52. Fedotov A B, Serebryannikov E E, Zheltikov A M Phys. Rev. A, (in press)
  53. Marcatili E A J, Schmeltzer R A Bell Syst. Tech. J. 43 1783 (1964)
  54. Zheltikov A M Usp. Fiz. Nauk 172 743 (2002); Zheltikov A M Phys. Usp. 45 687 (2002)
  55. Litchinitser N M et al. Opt. Lett. 27 1592 (2002)
  56. Litchinitser N M et al. Opt. Express 11 1243 (2003)
  57. Roberts P et al. Opt. Express 13 236 (2005)
  58. Litchinitser N M, Poliakov E Appl. Phys. B 81 347 (2005)
  59. Yariv A, Yeh P Optical Waves In Crystals (New York: Wiley, 1984)
  60. Nisoli M, De Silvestri S, Svelto O Appl. Phys. Lett. 68 2793 (1996)
  61. Nisoli M et al. Opt. Lett. 22 522 (1997)
  62. Miyagi M, Nishida S IEEE Trans. Microwave Theory Tech. 28 398 (1980)
  63. Miyagi M, Nishida S IEEE Trans. Microwave Theory Tech. 28 536 (1980)
  64. Ibanescu M et al. Science 289 415 (2000)
  65. Johnson S et al. Opt. Express 9 748 (2001)
  66. Konorov S O i dr. Zh. Eksp. Teor. Fiz. 123 975 (2003); Konorov S O et al. JETP 96 857 (2003)
  67. Yeh P, Yariv A, Marom E J. Opt. Soc. Am. 68 1196 (1978)
  68. Xu Y, Lee R K, Yariv A Opt. Lett. 25 1756 (2000)
  69. Xu Y et al. J. Lightwave Technol. 20 428 (2002)
  70. Konorov S O et al. Phys. Rev. A 70 023807 (2004)
  71. Konorov S O et al. Phys. Rev. E 71 057603 (2005)
  72. Konorov S O et al. Laser Phys. Lett. 1 548 (2004)
  73. Fedotov I V, Fedotov A B, Zheltikov A M Opt. Lett. 31 2604 (2006)
  74. Benabid F et al. Science 298 399 (2002)
  75. Konorov S O, Fedotov A B, Zheltikov A M Opt. Lett. 28 1448 (2003)
  76. Benabid F et al. Nature 434 488 (2005)
  77. Fedotov A B et al. Phys. Rev. A 70 045802 (2004)
  78. Zheltikov A M Nature Mater. 4 267 (2005)
  79. Ivanov A A, Podshivalov A A, Zheltikov A M Opt. Lett. 31 3318 (2006)
  80. Limpert J et al. Opt. Express 11 3332 (2003)
  81. de Matos C J S et al. Phys. Rev. Lett. 93 103901 (2004)
  82. Limpert J et al. IEEE J. Select. Topics Quantum Electron. 12 233 (2006)
  83. Flusberg B A et al. Opt. Lett. 30 2272 (2005)
  84. Zheltikov A M Appl. Opt. 47 474 (2008)
  85. Fedotov A B, Beloglazov V I, Zheltikov A M Rossiiskie Nanotekhnologii 3 (1-2) 61 (2008); Fedotov A B, Beloglazov V I, Zheltikov A M Nanotechnol. Russ. 3 58 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions