Issues

 / 

2008

 / 

May

  

From the current literature


Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources


Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Plasma reactors and ion sources whose operation relies on a low-pressure radio-frequency (RF) inductive discharge have been an important constituent of modern ground and space technologies for several decades already. However, the steadily toughening and varying requirements of plasma technologies call for improving the old models of devices and developing novel prospective models. Of vital importance in the development of inductive plasma sources is the provision of conditions whereat the plasma efficiently absorbs the RF power. In recent years it has become evident that in a low-pressure RF inductive discharge the RF-generator power is distributed between the active resistance of the external circuit and the plasma. In the latter case, the power is delivered to the plasma via two channels: an inductive channel, which exists due to the current flowing through an inductor or an antenna, and a capacitive one, which is due to the antenna-plasma capacitive coupling. RF inductive discharge properties related to the RF-power redistribution between the channels are considered and the mechanisms of RF-power absorption are analyzed. The feasibilities of optimizing RF inductive plasma sources are also discussed.

Fulltext is available at IOP
PACS: 52.40.Fd, 52.50.−b, 52.80.Pi (all)
DOI: 10.1070/PU2008v051n05ABEH006422
URL: https://ufn.ru/en/articles/2008/5/f/
Citation: Kral’kina E A "Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources" Phys. Usp. 51 493–512 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кралькина Е А «Индуктивный высокочастотный разряд низкого давления и возможности оптимизации источников плазмы на его основе» УФН 178 519–540 (2008); DOI: 10.3367/UFNr.0178.200805f.0519

References (55) ↓ Cited by (43) Similar articles (1)

  1. Thomson J J Philos. Mag. 32 321 (1891)
  2. Hittorf W Ann. Phys. Chem. 21 90 (1884)
  3. Townsend J S, Donaldson R H Philos. Mag. 5 178 (1928)
  4. Townsend J S, Donaldson R H Philos. Mag. 7 600 (1929)
  5. MacKinnon K A Philos. Mag. 8 605 (1929)
  6. Godyak V A "Plasma phenomena in inductive discharges" Invited Papers from the 30th European Physical Soc. Conf. on Controlled Fusion and Plasma Physics (St. Petersburg), Russia, 7 – 11 July 2003, Plasma Phys. Control. Fusion 45 A399 (2003)
  7. Hopwood J Plasma Sources Sci. Technol. 1 109 (1992)
  8. Loeb H W "Recent work on radio frequency ion thrusters" J. Spacecraft Rockets 8 494 (1971)
  9. Godyak V A, Alexandrovich B M, Piejak R B US Patent 5,834,905 (November 19, 1998)
  10. Stevens J E "Electron cyclotron resonance plasma sources" High Density Plasma Sources : Design, Physics, And Phenomena (Ed. O A Popov) (Park Ridde, NJ: Noyes Publ., 1995) p. 312
  11. Uchida T Jpn. J. Appl. Phys. 33 L43 (1994)
  12. Tsuboi H et al. Jpn. J. Appl. Phys. 34 2476 (1995)
  13. Yoshida Z, Uchida T Jpn. J. Appl. Phys. 34 4213 (1995)
  14. Uchida T J. Vac. Sci. Technol. A 16 1529 (1998)
  15. Uchida T, Jpn. Patents 07-090632, 08-078188, 07-263190 (1994)
  16. Arsenin A V, Leiman V G, Tarakanov V P Kratkie Soobshcheniya Po Fizike FIAN (4) 19 (2003); Arsenin A V, Leiman V G, Tarakanov V P Bull. Lebedev Phys. Inst. (4) 15 (2003)
  17. Boswell R W US Patent 4,810,935 (March 7, 1989)
  18. Chen F F "Helicon plasma sources" High Density Plasma Sources : Design, Physics, And Phenomena (Ed. O A Popov) (Park Ridde, NJ: Noyes Publ., 1995) p. 1
  19. Aleksandrov A F i dr. Zh. Tekh. Fiz. 64 (11) 53 (1994); Aleksandrov A F et al. Tech Phys. 39 1118 (1994)
  20. Aleksandrov A F Patent RF № 2095877
  21. Silin V P, Rukhadze A A Elektromagnitnye Svoistva Plazmy i Plazmopodobnykh Sred (M.: Gosatomizdat, 1961)
  22. Ginzburg V L, Rukhadze A A Volny v Magnitoaktivnoi Plazme (M.: Nauka, 1970)
  23. Aleksandrov A F, Bogdankevich L S, Rukhadze A A Osnovy Elektrodinamiki Plazmy (M.: Vysshaya shkola, 1978); Translated into English, Aleksandrov A F, Bogdankevich L S, Rukhadze A A Principles Of Plasma Electrodynamics (Berlin: Springer-Verlag, 1984)
  24. Kondratenko A N Proniknovenie Polya v Plazmu (M.: Atomizdat, 1979)
  25. Lieberman M A, Lichtenberg A J Priniciples Of Plasma Discharges And Materials Processing (New York: Wiley, 1994)
  26. Boswell R W Phys. Lett. A 33 457 (1970)
  27. Boswell R W Plasma Phys. Control. Fusion 26 1147 (1984)
  28. Boswell R W, Henry D Appl. Phys. Lett. 47 1095 (1985)
  29. Chen F F "Helicon plasma sources" High Density Plasma Sources : Design, Physics, And Phenomena (Ed. O A Popov) (Park Ridde, NJ: Noyes Publ., 1995) p. 1
  30. Kolobov V I, Economou D J Plasma Sources Sci. Technol. 6 R1 (1997)
  31. Chen F F Phys. Plasmas 8 3008 (2001)
  32. Godyak V A, Piejak R B, Alexandrovich B M Plasma Sources Sci. Technol. 11 525 (2002)
  33. Miljak D G, Chen F F Plasma Sources Sci. Technol. 7 61 (1998)
  34. Blackwell D D, Chen F F Plasma Sources Sci. 10 226 (2001)
  35. Chen F F Plasma Phys. Control. Fusion 33 339 (1991)
  36. Aleksandrov A F i dr. Zh. Tekh. Fiz. 64 (11) 53 (1994); Aleksandrov A F et al. Tech Phys. 39 1118 (1994)
  37. Shamrai K P, Taranov V B Plasma Sources Sci. Technol. 5 474 (1996)
  38. Turner M M, Lieberman M A Plasma Sources Sci. Technol. 8 313 (1999)
  39. Thomson J J Philos. Mag. 4 1128 (1927)
  40. Piejak R B, Godyak V A, Alexandrovich B M Plasma Sources Sci. Technol. 1 179 (1992)
  41. Aleksandrov A F i dr. Fizika Plazmy 30 434 (2004); Aleksandrov A F et al. Plasma Phys. Rep. 30 398 (2004)
  42. Vavilin K V i dr. Zh. Tekh. Fiz. 74 (5) 44 (2004); Vavilin K V et al. Tech. Phys. 49 565 (2004)
  43. Vavilin K V i dr. Zh. Tekh. Fiz. 74 (6) 25 (2004); Vavilin K V et al. Tech. Phys. 49 686 (2004)
  44. Vavilin K V i dr. Zh. Tekh. Fiz. 74 (6) 29 (2004); Vavilin K V et al. Tech. Phys. 49 691 (2004)
  45. Aleksandrov A F i dr. Fizika Plazmy 30 434 (2004); Aleksandrov A F et al. Plasma Phys. Rep. 30 398 (2004)
  46. Aleksandrov A F (4) 70 (2005); Aleksandrov A F Prikladnaya Fizika (5) 72 (2005); Aleksandrov A F (1) 36 (2006); Aleksandrov A F (2) 41 (2006); Aleksandrov A F (4) 54 (2006); Aleksandrov A F (5) 33 (2006); Aleksandrov A F (5) 39 (2006)
  47. Godyak V A, Piejak R B, Alexandrovich B M J. Appl. Phys. 85 703 (1999)
  48. Godyak V A, Piejak R B, Alexandrovich B M Plasma Sources Sci. Technol. 3 169 (1994)
  49. Cunge G et al. Plasma Sources Sci. Technol. 8 576 (1999)
  50. El-Fayoumi I M, Jones I R, Turner M M J. Phys. D: Appl. Phys. 31 3082 (1998)
  51. Suzuki K et al. Plasma Sources Sci. Technol. 7 13 (1998)
  52. Godyak V Plasma Phys. Control. Fusion 45 A399 (2003)
  53. Lee H-J, Yang I-D, Whang K-W Plasma Sources Sci. Technol. 5 383 (1996)
  54. Alexandrov A F et al. "On the possibilities of RF ion thrusters optimization" 29th Intern. Electric. Propulsion Conf. Conf. (IEPCO5), Princeton, NJ, October 31 – November 4, 2005 (2005)
  55. Kozlov N P, Morozov A I (Otv. red.) Plazmennye Uskoriteli i Ionnye Inzhektory (M.: Nauka, 1984)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions