Issues

 / 

2008

 / 

May

  

From the current literature


Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources


Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Plasma reactors and ion sources whose operation relies on a low-pressure radio-frequency (RF) inductive discharge have been an important constituent of modern ground and space technologies for several decades already. However, the steadily toughening and varying requirements of plasma technologies call for improving the old models of devices and developing novel prospective models. Of vital importance in the development of inductive plasma sources is the provision of conditions whereat the plasma efficiently absorbs the RF power. In recent years it has become evident that in a low-pressure RF inductive discharge the RF-generator power is distributed between the active resistance of the external circuit and the plasma. In the latter case, the power is delivered to the plasma via two channels: an inductive channel, which exists due to the current flowing through an inductor or an antenna, and a capacitive one, which is due to the antenna-plasma capacitive coupling. RF inductive discharge properties related to the RF-power redistribution between the channels are considered and the mechanisms of RF-power absorption are analyzed. The feasibilities of optimizing RF inductive plasma sources are also discussed.

Fulltext is available at IOP
PACS: 52.40.Fd, 52.50.−b, 52.80.Pi (all)
DOI: 10.1070/PU2008v051n05ABEH006422
URL: https://ufn.ru/en/articles/2008/5/f/
Citation: Kral’kina E A "Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources" Phys. Usp. 51 493–512 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кралькина Е А «Индуктивный высокочастотный разряд низкого давления и возможности оптимизации источников плазмы на его основе» УФН 178 519–540 (2008); DOI: 10.3367/UFNr.0178.200805f.0519

References (55) Cited by (43) ↓ Similar articles (1)

  1. Kralkina E A, Nekludova P A et al Vacuum 198 110873 (2022)
  2. Zielke D, Rauner D et al Plasma Sources Sci. Technol. 30 065011 (2021)
  3. Razhev A M, Churkin D S, Tkachenko R A Laser Phys. Lett. 18 095001 (2021)
  4. Kartashov I N, Kuzelev M V J. Exp. Theor. Phys. 131 645 (2020)
  5. KRALKINA Elena, NEKLIUDOVA Polina et al Plasma Sci. Technol. 22 055405 (2020)
  6. KRALKINA Elena, VAVILIN Konstantin et al Plasma Sci. Technol. 22 115404 (2020)
  7. Petrov A K, Kralkina E A et al Vacuum 181 109634 (2020)
  8. Val’shin A M, Pershin C M, Mikheev G M Bull. Lebedev Phys. Inst. 46 191 (2019)
  9. Rauner D, Briefi S, Fantz U Plasma Sources Sci. Technol. 28 095011 (2019)
  10. Petrov A K, Kralkina E A et al Vacuum 169 108927 (2019)
  11. Kralkina E A, Vavilin K V et al Vacuum 167 136 (2019)
  12. Kralkina E, Alexandrov A et al Micromachining Chapter 5 (2019)
  13. Li H, Gao F et al Journal Of Applied Physics 125 173303 (2019)
  14. Aleksandrov A F, Vavilin K V et al J. Commun. Technol. Electron. 63 374 (2018)
  15. Nekliudova P A, Kralkina E A et al Plasma Phys. Rep. 44 878 (2018)
  16. Kuzenov V V, Ryzhkov S V, Frolko P A J. Phys.: Conf. Ser. 830 012049 (2017)
  17. Rauner D, Mattei S et al (AIP Conference Proceedings) Vol. 1869 (2017) p. 030035
  18. Gavrikov A, Kuzmichev S et al EPJ Web Conf. 157 03062 (2017)
  19. Shishkin G G, Shishkin A G et al J. Commun. Technol. Electron. 62 588 (2017)
  20. Stratakos Y, Zeniou A, Gogolides E Plasma Process Polym 14 1600107 (2017)
  21. Rauner D, Briefi S, Fantz U Plasma Sources Sci. Technol. 26 095004 (2017)
  22. Shafir G, Zolotukhin D et al Plasma Sources Sci. Technol. 26 025005 (2017)
  23. Valshin A M, Pershin S M, Mikheev G M Bull. Lebedev Phys. Inst. 44 228 (2017)
  24. Kralkina E A, Nekliudova P A et al Plasma Sources Sci. Technol. 26 055006 (2017)
  25. Es’kin V A, Kudrin A V 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), (2017) p. 1372
  26. Kralkina E A, Rukhadze A A et al Plasma Sources Sci. Technol. 25 015016 (2016)
  27. Aleksandrov A F, Petrov A K et al Russ Microelectron 45 433 (2016)
  28. Frolko P A (AIP Conference Proceedings) Vol. 1771 (2016) p. 070013
  29. Meshcheryakova E A, Kaziev A V et al Bull. Russ. Acad. Sci. Phys. 80 175 (2016)
  30. Aleksandrov A F, Petrov A K et al Plasma Phys. Rep. 42 290 (2016)
  31. Meshcheryakova E, Zibrov M et al Physics Procedia 71 121 (2015)
  32. Es’kin V A, Ivoninsky A V, Kudrin A V PIER B 63 173 (2015)
  33. Petrov A K, Vavilin K V et al Moscow Univ. Phys. 70 527 (2015)
  34. Kralkina E A, Nekliudova P A et al Moscow Univ. Phys. 69 92 (2014)
  35. Godyak V J. Phys. D: Appl. Phys. 46 283001 (2013)
  36. Vavilin K V, Gomorev M A et al Moscow Univ. Phys. 67 92 (2012)
  37. Gushchin M E, Zaboronkova T M et al Physics Of Plasmas 19 093301 (2012)
  38. Koldanov V A, Korobkov S V et al Plasma Phys. Rep. 37 680 (2011)
  39. Kuzelev M V Bull. Lebedev Phys. Inst. 37 31 (2010)
  40. Alexandrov A F, Vavilin K V et al Moscow Univ. Phys. 65 43 (2010)
  41. Alexandrov A F, Vavilin K V et al Moscow Univ. Phys. 65 311 (2010)
  42. Aleksandrov A F, Kuzelev M V, Rukhadze A A J. Commun. Technol. Electron. 55 773 (2010)
  43. Denisova N IEEE Trans. Plasma Sci. 37 502 (2009)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions