Issues

 / 

2008

 / 

May

  

From the current literature


Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Plasma reactors and ion sources whose operation relies on a low-pressure radio-frequency (RF) inductive discharge have been an important constituent of modern ground and space technologies for several decades already. However, the steadily toughening and varying requirements of plasma technologies call for improving the old models of devices and developing novel prospective models. Of vital importance in the development of inductive plasma sources is the provision of conditions whereat the plasma efficiently absorbs the RF power. In recent years it has become evident that in a low-pressure RF inductive discharge the RF-generator power is distributed between the active resistance of the external circuit and the plasma. In the latter case, the power is delivered to the plasma via two channels: an inductive channel, which exists due to the current flowing through an inductor or an antenna, and a capacitive one, which is due to the antenna-plasma capacitive coupling. RF inductive discharge properties related to the RF-power redistribution between the channels are considered and the mechanisms of RF-power absorption are analyzed. The feasibilities of optimizing RF inductive plasma sources are also discussed.

Fulltext pdf (412 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n05ABEH006422
PACS: 52.40.Fd, 52.50.−b, 52.80.Pi (all)
DOI: 10.1070/PU2008v051n05ABEH006422
URL: https://ufn.ru/en/articles/2008/5/f/
000259376200006
2-s2.0-51549088632
2008PhyU...51..493K
Citation: Kral’kina E A "Low-pressure radio-frequency inductive discharge and possibilities of optimizing inductive plasma sources" Phys. Usp. 51 493–512 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кралькина Е А «Индуктивный высокочастотный разряд низкого давления и возможности оптимизации источников плазмы на его основе» УФН 178 519–540 (2008); DOI: 10.3367/UFNr.0178.200805f.0519

References (55) Cited by (51) ↓ Similar articles (1)

  1. Yu Zh, Chen Zh et al Fusion Engineering And Design 199 114104 (2024)
  2. Nikonov A M, Vavilin K V et al Plasma Phys. Rep. 50 77 (2024)
  3. ZADIRIEV Ilya, KRALKINA Elena et al Plasma Sci. Technol. 25 025405 (2023)
  4. Wang N, Liu Zh et al Phys. Scr. 98 115606 (2023)
  5. Golubeva A V, Bobyr N P et al Fusion Science And Technology 79 488 (2023)
  6. Zadiriev I I, Vavilin K V et al Plasma Phys. Rep. 48 961 (2022)
  7. Kralkina E A, Nekludova P A et al Vacuum 198 110873 (2022)
  8. Nikonov A M, Vavilin K V et al Plasma Phys. Rep. 48 1189 (2022)
  9. Zielke D, Rauner D et al Plasma Sources Sci. Technol. 30 065011 (2021)
  10. Razhev A M, Churkin D S, Tkachenko R A Laser Phys. Lett. 18 095001 (2021)
  11. KRALKINA Elena, NEKLIUDOVA Polina et al Plasma Sci. Technol. 22 055405 (2020)
  12. Kartashov I N, Kuzelev M V J. Exp. Theor. Phys. 131 645 (2020)
  13. KRALKINA Elena, VAVILIN Konstantin et al Plasma Sci. Technol. 22 115404 (2020)
  14. Petrov A K, Kralkina E A et al Vacuum 181 109634 (2020)
  15. Kralkina E, Alexandrov A et al Micromachining Chapter 5 (2019)
  16. Kralkina E A, Vavilin K V et al Vacuum 167 136 (2019)
  17. Vorona N A, Gavrikov A V et al IEEE Trans. Plasma Sci. 47 1223 (2019)
  18. Petrov A K, Kralkina E A et al Vacuum 169 108927 (2019)
  19. Rauner D, Briefi S, Fantz U Plasma Sources Sci. Technol. 28 095011 (2019)
  20. Val’shin A M, Pershin C M, Mikheev G M Bull. Lebedev Phys. Inst. 46 191 (2019)
  21. Li H, Gao F et al 125 (17) (2019)
  22. Nekliudova P A, Kralkina E A et al Plasma Phys. Rep. 44 878 (2018)
  23. Aleksandrov A F, Vavilin K V et al J. Commun. Technol. Electron. 63 374 (2018)
  24. Kuzenov V V, Ryzhkov S V, Frolko P A J. Phys.: Conf. Ser. 830 012049 (2017)
  25. Rauner D, Mattei S et al (AIP Conference Proceedings) Vol. 1869 (2017) p. 030035
  26. Stratakos Y, Zeniou A, Gogolides E Plasma Processes & Polymers 14 (4-5) (2017)
  27. Shishkin G G, Shishkin A G et al J. Commun. Technol. Electron. 62 588 (2017)
  28. Valshin A M, Pershin S M, Mikheev G M Bull. Lebedev Phys. Inst. 44 228 (2017)
  29. Gavrikov A, Kuzmichev S et al EPJ Web Conf. 157 03062 (2017)
  30. Es’kin V A, Kudrin A V 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), (2017) p. 1372
  31. Kralkina E A, Nekliudova P A et al Plasma Sources Sci. Technol. 26 055006 (2017)
  32. Shafir G, Zolotukhin D et al Plasma Sources Sci. Technol. 26 025005 (2017)
  33. Rauner D, Briefi S, Fantz U Plasma Sources Sci. Technol. 26 095004 (2017)
  34. Meshcheryakova E A, Kaziev A V et al Bull. Russ. Acad. Sci. Phys. 80 175 (2016)
  35. Kralkina E A, Rukhadze A A et al Plasma Sources Sci. Technol. 25 015016 (2016)
  36. Aleksandrov A F, Petrov A K et al Russ Microelectron 45 433 (2016)
  37. Aleksandrov A F, Petrov A K et al Plasma Phys. Rep. 42 290 (2016)
  38. Frolko P A (AIP Conference Proceedings) Vol. 1771 (2016) p. 070013
  39. Petrov A K, Vavilin K V et al Moscow Univ. Phys. 70 527 (2015)
  40. Es’kin V A, Ivoninsky A V, Kudrin A V PIER B 63 173 (2015)
  41. Meshcheryakova E, Zibrov M et al Physics Procedia 71 121 (2015)
  42. Kralkina E A, Nekliudova P A et al Moscow Univ. Phys. 69 92 (2014)
  43. Godyak V J. Phys. D: Appl. Phys. 46 283001 (2013)
  44. Vavilin K V, Gomorev M A et al Moscow Univ. Phys. 67 92 (2012)
  45. Gushchin M E, Zaboronkova T M et al 19 (9) (2012)
  46. Koldanov V A, Korobkov S V et al Plasma Phys. Rep. 37 680 (2011)
  47. Alexandrov A F, Vavilin K V et al Moscow Univ. Phys. 65 311 (2010)
  48. Aleksandrov A F, Kuzelev M V, Rukhadze A A J. Commun. Technol. Electron. 55 773 (2010)
  49. Kuzelev M V Bull. Lebedev Phys. Inst. 37 31 (2010)
  50. Alexandrov A F, Vavilin K V et al Moscow Univ. Phys. 65 43 (2010)
  51. Denisova N IEEE Trans. Plasma Sci. 37 502 (2009)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions