Issues

 / 

2008

 / 

May

  

Reviews of topical problems


‘Giant’ strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity

 a,  b, c
a Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Max-Planck Institute of the Physics of Complex Systems, Dresden, Germany

In relation to the recently intensified search for new superconducting systems, it is interesting to study the properties of metal nanoclusters containing ~ 102-103 free carriers. It is essential that the spectra of delocalized electrons in many clusters form energy shells similar to those in atoms and nuclei. The superconducting pairing can be very strong if the cluster parameters satisfy certain conditions. Such clusters constitute a new family of high-temperature superconductors (with Tc ≥ 150 K). Transition into the superconducting state is manifested in an essential rearrangement of the energy spectrum. Pair correlation affects the optical, magnetic, and thermodynamic properties of clusters; corresponding changes can be detected in specific experiments. Clusters can form high-temperature superconducting tunneling networks, and this leads to macroscopic high-temperature superconductivity. In principle, higher values of Tc, up to room temperature, may be achieved.

Fulltext: pdf
Log in or sign up to access the full texts.
Fulltext is also available at DOI: 10.1070/PU2008v051n05ABEH006531
PACS: 36.40.−c, 74.70.−b, 74.78.Na (all)
DOI: 10.1070/PU2008v051n05ABEH006531
URL: https://ufn.ru/en/articles/2008/5/a/
Citation: Kresin V Z, Ovchinnikov Yu N "'Giant' strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity" Phys. Usp. 51 427–435 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кресин В З, Овчинников Ю Н «„Гигантское“ усиление сверхпроводящего спаривания в металлических нанокластерах: сильное увеличение температуры перехода и возможность сверхпроводимости при комнатной температуре» УФН 178 449–458 (2008); DOI: 10.3367/UFNr.0178.200805a.0449

References (68) ↓ Cited by (54) Similar articles (20)

  1. Ovchinnikov Y N, Kresin V Z Eur. Phys. J. B 45 5 (2005)
  2. Ovchinnikov Y N, Kresin V Z Eur. Phys. J. B 47 333 (2005)
  3. Kresin V Z, Ovchinnikov Y N Phys. Rev. B 74 024514 (2006)
  4. von Delft J, Ralph D C Phys. Rep. 345 61 (2001)
  5. Perenboom J, Wyder P, Meier F Phys. Rep. 78 173 (1981)
  6. Abeles B, in Applied Solid State Science Vol. 6 (Ed. R Wolfe) (New York: Academic Press, 1976) p. 1
  7. Dynes R C, Garno J P, Rowell J M Phys. Rev. Lett. 40 479 (1978)
  8. Deutscher G New Superconductors : From Granular To High Tc (Hackensack, NJ: World Scientific, 2006)
  9. Ralph D C, Black C T, Tinkham M Phys. Rev. Lett. 74 3241 (1995); Ralph D C, Black C T, Tinkham M Phys. Rev. Lett. 78 4087 (1997)
  10. Black C T, Ralph D C, Tinkham M Phys. Rev. Lett. 76 688 (1996)
  11. Tinkham M, Hergenrother J M, Lu J G Phys. Rev. B 51 12649 (1995)
  12. Knight W D et al. Phys. Rev. Lett. 52 2141 (1984)
  13. de Heer W A Rev. Mod. Phys. 65 611 (1993)
  14. Brack M Rev. Mod. Phys. 65 677 (1993)
  15. Frauendorf S G, Guet C Annu. Rev. Nucl. Part. Sci. 51 219 (2001)
  16. Kresin V V, Knight W, in Pair Correlations In Many-Fermion Systems (Ed. V Z Kresin) (New York: Plenum Press, 1998) p. 245
  17. Ring P, Schuck P The Nuclear Many-Body Problem (New York: Springer Press, 1980)
  18. Schriver K E et al. Phys. Rev. Lett. 64 2539 (1990)
  19. Pellarin M et al. J. Chem. Phys. 98 944 (1993)
  20. Ichihava T et al. Int. J. Mass Spectrom. Ion Process. 69 109 (1986); Ruppel M, Rademann K Chem. Phys. Lett. 197 280 (1992)
  21. Lermé J et al. Chem. Phys. Lett. 304 19 (1999)
  22. Kresin V J. Chem. Phys. 128 094706 (2008)
  23. Salem L The Molecular Orbital Theory Of Conjugated Systems (New York: W. A. Benjamin, 1966)
  24. Bohr A, Mottelson B R, Pines D Phys. Rev. 110 936 (1958)
  25. Belyaev S T Mat.-Fys. Medd. Danske Vid. Selsk. 31 131 (1959)
  26. Migdal A B Nucl. Phys. 13 655 (1959)
  27. Labbé J, Barišić S, Friedel J Phys. Rev. Lett. 19 1039 (1967)
  28. Anderson P W J. Phys. Chem. Solids 11 26 (1959)
  29. Knight W, in Novel Superconductivity (Eds S A Wolf, V Z Kresin) (New York: Plenum Press, 1987) p. 47
  30. Barranco M et al. Z. Phys. D 22 659 (1992)
  31. Boyaci H, Gedik Z, Kulik I O J. Supercond. 14 133 (2001)
  32. Friedel J J. Phys. II (France) 2 959 (1992)
  33. Bednorz J G, Müller K A Z. Phys. B 64 189 (1986)
  34. Wu M K et al. Phys. Rev. Lett. 58 908 (1987)
  35. Abrikosov A A, Gor’kov L P, Dzyaloshinskii I E Metody Kvantovoi Teorii Polya v Statisticheskoi Fizike 3-e izd. (M.: Dobrosvet, 2006); Translated into English, Abrikosov A A, Gorkov L P, Dzyaloshinski I E Methods Of Quantum Field Theory In Statistical Physics 1st ed. (New York: Dover Publ., 1975)
  36. Gor’kov L P Zh. Eksp. Teor. Fiz. 34 735 (1958); Gor’kov L P JETP 7 505 (1958)
  37. Scalapino D J, in Superconductivity Vol. 1 (Ed. R Parks) (New York: M. Dekker, 1969) p. 449
  38. Grimvall G The Electron-Phonon Interaction In Metals (Amsterdam: North-Holland, 1981)
  39. Karakozov A E, Maksimom E G, Mashkov S A Zh. Eksp. Teor. Fiz. 68 1937 (1975); Karakozov A E, Maksimov E G, Mashkov S A Sov. Phys. JETP 41 971 (1975)
  40. Eliashberg G M Zh. Eksp. Teor. Fiz. 39 1437 (1960); Eliashberg G M Sov. Phys. JETP 12 1000 (1961)
  41. Heiselberg H Phys. Rev. A 63 043606 (2001)
  42. Yannouleas C, Broglia R A Ann. Phys. (New York) 217 105 (1992)
  43. Cohen M, in Superconductivity Vol. 1 (Ed. R Parks) (New York: M. Dekker, 1969) p. 615
  44. McMillan W L Phys. Rev. 167 331 (1968)
  45. Owen C S, Scalapino D J Physica 55 691 (1971)
  46. Kresin V Z, Gutfreund H, Little W A Solid State Commun. 51 339 (1984)
  47. Kresin V Z Phys. Lett. A 122 434 (1987)
  48. Ekardt W Phys. Rev. B 29 1558 (1984)
  49. Moro R et al. Science 300 1265 (2003)
  50. Wrigge G, Astruk Hoffmann M, v. Issendorff B Phys. Rev. A 65 063201 (2002); Wrigge G et al. Eur. Phys. J. D 24 23 (2003)
  51. von Issendorff B, Cheshnovsky O Annu. Rev. Phys. Chem. 56 549 (2005)
  52. Cao B et al. arXiv:0804.0824
  53. Breaux G A et al. Phys. Rev. Lett. 94 173401 (2005)
  54. Ovchinnikov Y "Cluster-based tunneling network" Preprint (Berkeley, CA Lawrence: Berkeley Laboratory, Univ. of California)
  55. Kulik I, Yanson I The Josephson Effect In Superconductive Tunneling Structures (Jerusalem: Israel Program for Scientific Translations, 1972)
  56. Gobert D, Schollwock U, von Delft J Eur. Phys. J. B 38 501 (2004)
  57. Kresin V, Ovchinnikov Y, Wolf S Appl. Phys. Lett. 83 722 (2003)
  58. Bozovic I et al. Phys. Rev. Lett. 93 167002 (2004)
  59. Weitz I et al. J. Phys. Chem. 104 4288 (2004)
  60. Hagel J et al. J. Low Temp. Phys. 129 133 (2002)
  61. Strongin M, Kammerer O, Parkin A Phys. Rev. Lett. 14 949 (1965)
  62. Parmenter R Phys. Rev. 166 392 (1968)
  63. Wolf S A, Kresin V Z (Eds) Novel Superconductivity (New York: Plenum Press, 1988)
  64. Ginzburg V L Usp. Fiz. Nauk 175 187 (2005); Ginzburg V L Phys. Usp. 48 173 (2005)
  65. Chu C et al. cond-mat/0511166
  66. Pickett W J. Supercond. 19 291 (2006)
  67. Zakhidov A et al. Science 282 897 (1998)
  68. Reyren N et al. Science 317 1196 (2007)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions