Issues

 / 

2008

 / 

May

  

Reviews of topical problems


‘Giant’ strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity

 a,  b, c
a Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c Max-Planck Institute of the Physics of Complex Systems, Dresden, Germany

In relation to the recently intensified search for new superconducting systems, it is interesting to study the properties of metal nanoclusters containing ~ 102-103 free carriers. It is essential that the spectra of delocalized electrons in many clusters form energy shells similar to those in atoms and nuclei. The superconducting pairing can be very strong if the cluster parameters satisfy certain conditions. Such clusters constitute a new family of high-temperature superconductors (with Tc ≥ 150 K). Transition into the superconducting state is manifested in an essential rearrangement of the energy spectrum. Pair correlation affects the optical, magnetic, and thermodynamic properties of clusters; corresponding changes can be detected in specific experiments. Clusters can form high-temperature superconducting tunneling networks, and this leads to macroscopic high-temperature superconductivity. In principle, higher values of Tc, up to room temperature, may be achieved.

Fulltext pdf (244 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n05ABEH006531
PACS: 36.40.−c, 74.70.−b, 74.78.Na (all)
DOI: 10.1070/PU2008v051n05ABEH006531
URL: https://ufn.ru/en/articles/2008/5/a/
000259376200001
2-s2.0-51549104305
2008PhyU...51..427K
Citation: Kresin V Z, Ovchinnikov Yu N "'Giant' strengthening of superconducting pairing in metallic nanoclusters: large enhancement of Tc and potential for room-temperature superconductivity" Phys. Usp. 51 427–435 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кресин В З, Овчинников Ю Н «„Гигантское“ усиление сверхпроводящего спаривания в металлических нанокластерах: сильное увеличение температуры перехода и возможность сверхпроводимости при комнатной температуре» УФН 178 449–458 (2008); DOI: 10.3367/UFNr.0178.200805a.0449

References (68) Cited by (64) ↓ Similar articles (20)

  1. S G L J Supercond Nov Magn 38 (3) (2025)
  2. Garnov S V, Abramov D V et al Phys. Usp. 67 (02) 109 (2024)
  3. Brito B G A, Hai G -Q, Cândido L Chemical Physics Letters 831 140856 (2023)
  4. Okunev V D, Szymczak H Journal of Applied Physics 133 (8) (2023)
  5. Bachar N, Moshe A G Physica C: Superconductivity And Its Applications 614 1354359 (2023)
  6. Roduner E Symmetry 15 (8) 1491 (2023)
  7. Kucherik A, Kutrovskaya S et al J. Phys.: Conf. Ser. 2316 (1) 012015 (2022)
  8. Hu Kuo-juei, Yan W et al Nanotechnology 33 (50) 502001 (2022)
  9. Lebedev S G Tech. Phys. 67 (10) 696 (2022)
  10. Fionov A, Kraev I et al Polymers 14 (15) 3026 (2022)
  11. Rosen P F, Calvin Ja J et al Phys. Rev. B 103 (2) (2021)
  12. Mullins S M, Whetten R L et al The Journal of Chemical Physics 155 (20) (2021)
  13. Khudaberganov T A, Khudobin P P, Arakelian S M Bull. Russ. Acad. Sci. Phys. 84 (12) 1459 (2020)
  14. Arakelian S M, Kucherik A O et al Bull. Russ. Acad. Sci. Phys. 84 (3) 245 (2020)
  15. Bagayev S N, Arakelian S M et al Bull. Russ. Acad. Sci. Phys. 84 (12) 1427 (2020)
  16. Palnichenko A V, Mazilkin A A et al Physica C: Superconductivity And Its Applications 571 1353608 (2020)
  17. Arakelian S M, Khudaberganov T A et al Opt. Spectrosc. 127 (1) 121 (2019)
  18. Acosta V M, Bouchard L S et al J Supercond Nov Magn 32 (1) 85 (2019)
  19. Palnichenko A V, Zver‘kova I I et al Physica C: Superconductivity And Its Applications 558 25 (2019)
  20. Moshe A, Bachar N et al J Supercond Nov Magn 31 (3) 733 (2018)
  21. Palnichenko A V, Vyaselev O M et al Physica C: Superconductivity And Its Applications 534 61 (2017)
  22. Sinnecker E H C P, Sant’Anna M M, ElMassalami M Phys. Rev. B 95 (5) (2017)
  23. Nande A, Fostner Sh et al Nanotechnology 28 (16) 165704 (2017)
  24. Arakelian S M, Osipov A V et al Bull. Russ. Acad. Sci. Phys. 81 (12) 1401 (2017)
  25. Borisova S D, Rusina G G et al Jetp Lett. 103 (7) 471 (2016)
  26. Palnichenko A V, Vyaselev O M et al Physica C: Superconductivity And Its Applications 525-526 65 (2016)
  27. Galván C G, Cabrera-Trujillo J M et al Phys. Status Solidi B 253 (8) 1638 (2016)
  28. Okunev V D, Samoilenko Z A et al Journal Of Magnetism And Magnetic Materials 399 192 (2016)
  29. Palnichenko A V, Shakhrai D V et al Physica C: Superconductivity And Its Applications 512 6 (2015)
  30. Amelin I I Russ. J. Phys. Chem. 89 (9) 1704 (2015)
  31. Roduner E, Jensen Ch Magnetochemistry 1 (1) 28 (2015)
  32. Bachar N, Pracht U S et al J Low Temp Phys 179 (1-2) 83 (2015)
  33. Lunyov A V, Mikhajlov V M, Vlasnikov A K Bull. Russ. Acad. Sci. Phys. 79 (7) 893 (2015)
  34. Palnichenko A V, Sidorov N S et al Physica C: Superconductivity 498 54 (2014)
  35. Roduner E, Jensen Ch et al Angew Chem Int Ed 53 (17) 4318 (2014)
  36. Hopjan M, Lipavský P Phys. Rev. B 89 (9) (2014)
  37. Roduner E, Jensen Ch et al Angewandte Chemie 126 (17) 4406 (2014)
  38. Alexandrova A N, Bouchard L Advances In Chemical Physics Vol. Advances in Chemical PhysicsSub‐Nano Clusters: The Last Frontier of Inorganic Chemistry156 1 (2014) p. 73
  39. Sidorov N S, Palnichenko A V et al Physica C: Superconductivity 488 18 (2013)
  40. Okunev V D, Samoilenko Z A et al Journal of Applied Physics 113 (16) (2013)
  41. He M, Wong Ch H et al ACS Nano 7 (5) 4187 (2013)
  42. Kresin V Z, Ovchinnikov Yu N J Supercond Nov Magn 26 (4) 745 (2013)
  43. Morozov Yu G, Ortega D et al Journal Of Alloys And Compounds 572 150 (2013)
  44. Belousov O K, Palii N A Russ. Metall. 2012 (7) 572 (2012)
  45. Bianconi G Phys. Rev. E 85 (6) (2012)
  46. Strukov G V, Stolyarov V S et al Physica C: Superconductivity 483 162 (2012)
  47. Sidorov N S, Palnichenko A V, Vyaselev O M Physica C: Superconductivity 480 123 (2012)
  48. Ovchinnikov Yu N, Kresin V Z J. Exp. Theor. Phys. 114 (6) 1012 (2012)
  49. Okunev V D, Lewandowski S J et al Phys. Solid State 53 (1) 13 (2011)
  50. Sidorov N S, Palnichenko A V, Zver’kova I I J Supercond Nov Magn 24 (5) 1433 (2011)
  51. Sidorov N S, Palnichenko A V, Zver’kova I I Physica C: Superconductivity 471 (13-14) 406 (2011)
  52. Sen’kov R A, Zelevinsky V G Phys. Atom. Nuclei 74 (9) 1267 (2011)
  53. Sidorov N S, Palnichenko A V, Khasanov S S Physica C: Superconductivity 471 (7-8) 247 (2011)
  54. Baturin V S, Losyakov V V J. Exp. Theor. Phys. 112 (2) 226 (2011)
  55. Makarov G N Uspekhi Fizicheskikh Nauk 181 (4) 365 (2011)
  56. Sidorov N S, Palnichenko A V, Khasanov S S Solid State Communications 150 (31-32) 1483 (2010)
  57. Makarov G N Uspekhi Fizicheskikh Nauk 180 (2) 185 (2010)
  58. Makarov G N, Petin A N J. Exp. Theor. Phys. 110 (4) 568 (2010)
  59. Okunev V D, Samoilenko Z A et al J. Phys.: Condens. Matter 22 (29) 296001 (2010)
  60. Makarov G N, Petin A N Jetp Lett. 90 (10) 642 (2010)
  61. Makarov G N, Petin A N Chemical Physics Letters 484 (1-3) 14 (2009)
  62. Bordovskii G A, Marchenko A V, Seregin P P Glass Phys Chem 35 (6) 643 (2009)
  63. Makarov G N, Petin A N Jetp Lett. 89 (8) 404 (2009)
  64. Barabanenkov Yu N Uspekhi Fizicheskikh Nauk 179 (5) 534 (2009)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions