Issues

 / 

2008

 / 

November

  

Physics of our days


Superresolution and singularities in phase images


MIREA - Russian Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation

The Rayleigh criterion and the Airy radius $r_0$ are not adequate for characterizing spatial resolution in phase and some other functional images. An essential feature of phase images is a possible formation of wavefront dislocations which depend on the position in space of the so-called singular lines $[I(x,y,z)=0]$, in the neighborhood of which the phase gradient grad $\varphi \approx I^{-1/2}$ increases and the intensity tends to zero. Based on this gradient phase behavior, the minimal length $L$ dependent on the signal-to-noise ratio $(S/N)$ is proposed as the phase resolution criterion, and a formula for the energy-dependent super-resolution, $\Xi = r_0/L \cong 2(S/N)^{1/2}$, is devised. Measurements on a 100-nm-diameter latex sphere using the Airyscan coherent phase microscope confirmed that a marked ($\Xi \cong 5$) superresolution can be achieved.

Fulltext pdf (497 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n11ABEH006682
PACS: 42.30.−d, 42.79.−e, 87.64.Rr (all)
DOI: 10.1070/PU2008v051n11ABEH006682
URL: https://ufn.ru/en/articles/2008/11/c/
000264020300003
2-s2.0-63249135614
2008PhyU...51.1161T
Citation: Tychinskii V P "Superresolution and singularities in phase images" Phys. Usp. 51 1161–1169 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Тычинский В П «Сверхразрешение и сингулярности в фазовых изображениях» УФН 178 1205–1214 (2008); DOI: 10.3367/UFNr.0178.200811c.1205

References (36) Cited by (17) ↓ Similar articles (1)

  1. Zotov A M, Korolenko P V, Pavlov N N Izvestiâ Akademii Nauk SSSR. Seriâ Fizičeskaâ 88 24 (2024)
  2. Zotov A M, Korolenko P V VMU (№5_2023) 2350403–1 (2024)
  3. Zotov A M, Korolenko P V, Pavlov N N Bull. Russ. Acad. Sci. Phys. 88 17 (2024)
  4. Zotov A M, Korolenko P V Moscow Univ. Phys. 78 647 (2023)
  5. Symeonidis M, Nakagawa W et al OSA Continuum 2 2496 (2019)
  6. Symeonidis M, Kim D Ch et al Optical Components and Materials XVI, (2019) p. 72
  7. Akhmedzhanov I M, Baranov D V et al Quantum Electron. 49 698 (2019)
  8. Khonina S N, Ustinov A V et al Opt. Mem. Neural Networks 23 50 (2014)
  9. Savelyev D A, Khonina S N VESTNIK Of Samara University. Aerospace And Mechanical Engineering 13 275 (2014)
  10. Levin G G, Moiseev N N et al Meas Tech 57 69 (2014)
  11. Tychinsky V P J. Biomed. Opt 19 126008 (2014)
  12. Levin G G, Vishnyakov G N et al Meas Tech 56 486 (2013)
  13. Levin G G, Moiseev N N et al Meas Tech 56 1038 (2013)
  14. Tychinsky V P, Kretushev A V et al J. Biomed. Opt 17 0760201 (2012)
  15. Lindberg Ja J. Opt. 14 083001 (2012)
  16. Tychinsky V P, Tikhonov A N Cell Biochem Biophys 58 107 (2010)
  17. Novitsky A V, Barkovsky L M Phys. Rev. A 79 (3) (2009)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions