Issues

 / 

2008

 / 

January

  

Reviews of topical problems


Materials with strong electron correlations

,
Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation

The electron structure and physical properties of strongly correlated systems containing elements with unfilled 3d, 4d, and 5f shells are analyzed. These systems include several transition metals, rare-earth elements, and actinides, as well as their numerous compounds, such as various oxides exhibiting metal-insulator phase transitions, cuprates, manganites, f systems with heavy fermions, and Kondo insulators. It is shown that the low-energy physics of such systems is described by three basic models: the Hubbard model, the sd-exchange model, and the periodic Anderson model under the condition that the on-site Coulomb repulsion energy U or the sd exchange energy J is of the order of the conduction-band width W. This situation does not involve a small parameter and should be treated nonperturbatively. We describe one such approach, the dynamic mean-field theory (DMFT), in which a system is considered to be only dynamically but not spatially correlated. We show that this approach, which is fully justified in the limit of large spatial dimensions (d→∞), covers the entire physics of strongly correlated systems and adequately describes the phenomena they exhibit. Extending the DMFT to include spatial correlations enables various d and f systems to be quantitatively described. Being a subject of intense development in recent years, the DMFT is the most effective and universal tool for studying various strongly correlated systems.

Fulltext pdf (603 KB)
Fulltext is also available at DOI: 10.1070/PU2008v051n01ABEH006388
PACS: 71.27.+a, 71.30.+h, 74.72.−h, 75.10.−b, 75.30.−m (all)
DOI: 10.1070/PU2008v051n01ABEH006388
URL: https://ufn.ru/en/articles/2008/1/c/
000256193500003
2-s2.0-44149107137
2008PhyU...51...23I
Citation: Izyumov Yu A, Kurmaev E Z "Materials with strong electron correlations" Phys. Usp. 51 23–56 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Изюмов Ю А, Курмаев Э З «Материалы с сильными электронными корреляциями» УФН 178 25–60 (2008); DOI: 10.3367/UFNr.0178.200801b.0025

References (145) Cited by (45) ↓ Similar articles (20)

  1. Lizunov V V, Melnyk I M et al Functional Magnetic and Spintronic Nanomaterials NATO Science For Peace And Security Series B: Physics And Biophysics Chapter 1 (2024) p. 1
  2. Lyakhova Ya S, Astretsov G V, Rubtsov A N Uspekhi Fizicheskikh Nauk 825 (2023)
  3. Orlov Yu S, Nikolaev S V et al Uspekhi Fizicheskikh Nauk 193 689 (2023)
  4. [Orlov Yu S, Nikolaev S V et al Phys. Usp. 66 647 (2023)]
  5. Lyakhova Ya S, Astretsov G V, Rubtsov A N Phys. Usp. 66 775 (2023)
  6. Nualpijit P, Soodchomshom B Journal Of Magnetism And Magnetic Materials 586 171201 (2023)
  7. Kizhaev F G, Medvedev N N, Starygina O V Russ Phys J 63 1562 (2021)
  8. Voronov V K Int J Theor Phys 60 924 (2021)
  9. Len E  G, Shatnii T  D et al Metallofiz. Noveishie Tekhnol. 43 1005 (2021)
  10. Vaz C A F, Shin Y J et al 8 (4) (2021)
  11. Len E  G, Lizunov V  V et al Metallofiz. Noveishie Tekhnol. 42 289 (2020)
  12. Seidel S, Schubert L et al 235 41 (2020)
  13. Didukh L, Skorenkyy Yu et al Springer Proceedings In Physics Vol. Nanocomposites, Nanostructures, and Their ApplicationsEffective Hamiltonians for Magnetic Ordering Within Periodic Anderson-Hubbard Model for Quantum Dot Array221 Chapter 30 (2019) p. 441
  14. Melnikova N, Murzashev A et al Fullerenes, Nanotubes And Carbon Nanostructures 25 379 (2017)
  15. Romashevskiy S A, Ovchinnikov A V et al High Temp 55 859 (2017)
  16. Len E  G, Lizunov V  V et al Metallofiz. Noveishie Tekhnol. 37 1405 (2016)
  17. Bubnov V P, Kareev I E et al Phys. Solid State 58 1698 (2016)
  18. Lebedev Yu A, Lobanov B V, Murzashev A I Russ Phys J 59 1037 (2016)
  19. Melnikova N V, Murzashev A I et al Synthetic Metals 220 292 (2016)
  20. Bobylev I B, Zyuzeva N A Phys. Solid State 57 1307 (2015)
  21. Yakubenya S M NS 07 1 (2015)
  22. Gabovich A M, Voitenko A I et al Physica C: Superconductivity And Its Applications 516 62 (2015)
  23. Tikhii A A, Kara-Murza S V et al Inorg Mater 51 928 (2015)
  24. Kareev I E, Bubnov V P et al Phys. Solid State 57 2323 (2015)
  25. Povzner A A, Volkov A G, Shumikhina K A Physics Procedia 75 348 (2015)
  26. Anisimov V I, Lukoyanov A V Acta Crystallogr C Struct Chem 70 137 (2014)
  27. Tikhii A A, Gritskih V A et al 40 756 (2014)
  28. Murzashev A I, Nazarova T I J. Exp. Theor. Phys. 119 902 (2014)
  29. Ribeiro A N, Macedo C A Journal Of The Korean Physical Society 62 1445 (2013)
  30. Volkov A G, Povzner A A Phys. Solid State 54 2351 (2012)
  31. Ribeiro A N, Macedo C A Phys. Rev. A 86 (2) (2012)
  32. Belousov O K, Palii N A Russ. Metall. 2012 572 (2012)
  33. Kristoffel N, Veende K Physica C: Superconductivity 471 188 (2011)
  34. Ekino T, Gabovich A M et al Symmetry 3 699 (2011)
  35. Murin A V, Shabanova I N, Trapeznikov V A Bull. Russ. Acad. Sci. Phys. 75 207 (2011)
  36. Mamsurova L G, Trusevich N G et al Bull. Russ. Acad. Sci. Phys. 75 1136 (2011)
  37. Voronov V NS 02 923 (2010)
  38. Zaitsev S V, Maksimov A A, Tartakovskii I I J. Exp. Theor. Phys. 111 582 (2010)
  39. Skornyakov S L, Skorikov N A et al Phys. Rev. B 81 (17) (2010)
  40. Ribeiro A N, Macedo C A Advances In Condensed Matter Physics 2010 1 (2010)
  41. Murin A V, Shabanova I N, Naĭmushina E A Phys. Solid State 51 2003 (2009)
  42. Ovchinnikov S G, Korshunov M M, Shneyder E I J. Exp. Theor. Phys. 109 775 (2009)
  43. Ivanovskii A L Uspekhi Fizicheskikh Nauk 178 1273 (2008) [Ivanovskii A L Phys.-Usp. 51 1229 (2008)]
  44. Val’kov V V, Dzebisashvili D M J. Exp. Theor. Phys. 107 679 (2008)
  45. Repetsky S P, Tatarenko V A et al Usp. Fiz. Met. 9 259 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions