Issues

 / 

2007

 / 

December

  

Methodological notes


Feynman disentangling îf noncommuting operators and group representation theory


Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

Feynman’s method for disentangling noncommuting operators is discussed and applied to nonstationary problems in quantum mechanics, including the excitation of à harmonic oscillator by an external force and/or bó time-varying frequency; spin rotation in à time-varying magnetic field; the disentangling of àn atom (ion) Hamiltonian in à laser field; à model with the hidden symmetry group of the hydrogen atom; and the theory of coherent states. The Feynman operator calculus combined with simple group-theoretical considerations allows disentangling the Hamiltonian and obtaining exact transition probabilities between the initial and final states of à quantum oscillator in analytic form without cumbersome calculations. The case of à D-dimensional oscillator is briefly discussed, in particular, in application to the problem of vacuum pair creation in an intense electric field.

Fulltext pdf (322 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n12ABEH006401
PACS: 02.20.−a, 03.65.Ca, 03.65.Fd (all)
DOI: 10.1070/PU2007v050n12ABEH006401
URL: https://ufn.ru/en/articles/2007/12/b/
000254795400002
2-s2.0-41949141349
2007PhyU...50.1217P
Citation: Popov V S "Feynman disentangling îf noncommuting operators and group representation theory" Phys. Usp. 50 1217–1238 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ïîïîâ Â Ñ «Ôåéíìàíîâñêèé ìåòîä ðàñïóòûâàíèÿ îïåðàòîðîâ è òåîðèÿ ïðåäñòàâëåíèé ãðóïï» ÓÔÍ 177 1319–1340 (2007); DOI: 10.3367/UFNr.0177.200712f.1319

References (114) Cited by (18) ↓ Similar articles (20)

  1. Likens Ja, Prabhakar S et al 133 (23) (2023)
  2. Dodonov V V J Russ Laser Res 42 243 (2021)
  3. Sen A, Dhasmana Sh, Silagadze Z K Annals Of Physics 422 168302 (2020)
  4. Pokutnyi O O J Math Sci 249 647 (2020)
  5. Popov V S, Popruzhenko S V Phys. Atom. Nuclei 82 1583 (2019)
  6. Khvedelidze A, Mladenov D, Rogojin I J. Phys.: Conf. Ser. 672 012002 (2016)
  7. Commutation Relations, Normal Ordering, and Stirling Numbers (2015) p. 419
  8. Prabhakar S, Melnik R, Inomata A 104 (14) (2014)
  9. Tonchev N S Phys. Rev. E 90 (5) (2014)
  10. Zhebrak E D, Man’ko V I Bull. Lebedev Phys. Inst. 41 339 (2014)
  11. Prabhakar S, Melnik R, Bonilla L L J. Phys. D: Appl. Phys. 46 265302 (2013)
  12. Prabhakar S, Melnik R et al 103 (23) (2013)
  13. Popov V S, Trusov M A J. Exp. Theor. Phys. 114 212 (2012)
  14. Gorokhov A V Bull. Russ. Acad. Sci. Phys. 75 150 (2011)
  15. Scholz D, Voronov V G, Weyrauch M 51 (6) (2010)
  16. Prabhakar S, Raynolds Ja et al Phys. Rev. B 82 (19) (2010)
  17. Popov V S, Trusov M A Physics Letters A 373 1925 (2009)
  18. Popov V S, Trusov M A Physics Letters A 372 5274 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions