Issues

 / 

2007

 / 

January

  

Reviews of topical problems


New approaches to electroweak symmetry breaking


CERN Physics Department, Theory Division, Geneva, Switzerland

Although the spectacular experimental achievements of particle physics in the last decade have strengthened the Standard Model (SM) as an adequate description of nature, they have also revealed that the SM matter represents a mere 5% or so of the energy density of the Universe, which clearly points to some physics beyond the SM despite the desperate lack of direct experimental evidence. The sector responsible for the spontaneous breaking of the SM electroweak symmetry is likely to be the first to provide experimental hints at this new physics. The aim of this review is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent ideas on how the dynamics of electroweak symmetry breaking can be explained.

Fulltext pdf (675 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n01ABEH006157
PACS: 12.15.−y, 12.60.−i, 14.80.Bn, 14.80.Cp (all)
DOI: 10.1070/PU2007v050n01ABEH006157
URL: https://ufn.ru/en/articles/2007/1/a/
000246449500001
2-s2.0-34249723237
2007PhyU...50....1G
Citation: Grojean Ch "New approaches to electroweak symmetry breaking" Phys. Usp. 50 1–35 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Грожан К «Новые подходы к механизмам нарушения электрослабой симметрии» УФН 177 3–42 (2007); DOI: 10.3367/UFNr.0177.200701a.0003

References (92) Cited by (21) Similar articles (20) ↓

  1. N.V. Krasnikov, V.A. Matveev “The search for new physics at the Large Hadron Collider47 643–670 (2004)
  2. M.I. Vysotskii, R.B. Nevzorov “Selected problems of supersymmetry phenomenology44 919–930 (2001)
  3. E.E. Boos “The SMEFT formalism: the basis for finding deviations from the Standard Model65 653–676 (2022)
  4. V.A. Rubakov “Large and infinite extra dimensions44 871–893 (2001)
  5. T. Konstandin “Quantum transport and electroweak baryogenesis56 747–771 (2013)
  6. E.E. Boos, O. Brandt et alThe top quark (20 years after the discovery)58 1133–1158 (2015)
  7. A.A. Ansel’m, N.G. Ural’tsev, V.A. Khoze “Higgs particles28 113–135 (1985)
  8. E.P. Shabalin “What can be expected from the further study of CP and T symmetry violation and CPT invariance tests44 895–918 (2001)
  9. Yu.G. Kudenko “Study of neutrino oscillations in long-baseline accelerator experiments54 549–572 (2011)
  10. D.S. Gorbunov, S.L. Dubovskii, S.V. Troitskii “Gauge mechanism of mediation of supersymmetry breaking42 623 (1999)
  11. V.A. Matveev, V.A. Rubakov et alNonconservation of baryon number under extremal conditions31 916–939 (1988)
  12. N.N. Achasov, G.N. Shestakov “Strong isospin symmetry breaking in light scalar meson production62 3–31 (2019)
  13. D.A. Trunin “Pedagogical introduction to the Sachdev—Ye—Kitaev model and two-dimensional dilaton gravity64 219–252 (2021)
  14. A.V. Eletskii “Transport properties of carbon nanotubes52 209–224 (2009)
  15. R.B. Nevzorov “Phenomenological aspects of supersymmetric extensions of the Standard Model66 543–575 (2023)
  16. V.A. Ryabov, V.A. Tsarev, A.M. Tskhovrebov “The search for dark matter particles51 1091–1121 (2008)
  17. A.P. Serebrov “Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by the Petersburg Nuclear Physics Institute (National Research Center "Kurchatov Institute") [PNPI (NRC KI)]58 1074–1094 (2015)
  18. S.N. Vergeles, N.N. Nikolaev et alGeneral relativity effects in precision spin experimental tests of fundamental symmetries66 109–147 (2023)
  19. A. Aubert “K0 three body decays11 482–488 (1969)
  20. B.A. Arbuzov “Models for violation of CP invariance11 493–499 (1969)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions