Issues

 / 

2007

 / 

January

  

Reviews of topical problems


New approaches to electroweak symmetry breaking


CERN Physics Department, Theory Division, Geneva, Switzerland

Although the spectacular experimental achievements of particle physics in the last decade have strengthened the Standard Model (SM) as an adequate description of nature, they have also revealed that the SM matter represents a mere 5% or so of the energy density of the Universe, which clearly points to some physics beyond the SM despite the desperate lack of direct experimental evidence. The sector responsible for the spontaneous breaking of the SM electroweak symmetry is likely to be the first to provide experimental hints at this new physics. The aim of this review is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent ideas on how the dynamics of electroweak symmetry breaking can be explained.

Fulltext pdf (675 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n01ABEH006157
PACS: 12.15.−y, 12.60.−i, 14.80.Bn, 14.80.Cp (all)
DOI: 10.1070/PU2007v050n01ABEH006157
URL: https://ufn.ru/en/articles/2007/1/a/
000246449500001
2-s2.0-34249723237
2007PhyU...50....1G
Citation: Grojean Ch "New approaches to electroweak symmetry breaking" Phys. Usp. 50 1–35 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Грожан К «Новые подходы к механизмам нарушения электрослабой симметрии» УФН 177 3–42 (2007); DOI: 10.3367/UFNr.0177.200701a.0003

References (92) Cited by (22) ↓ Similar articles (20)

  1. Ageeva Y, Petrov P Phys. Rev. D 110 (4) (2024)
  2. Ageeva Yu, Petrov P, Rubakov V J. High Energ. Phys. 2023 (1) (2023)
  3. Ageeva Yu A, Petrov P K Uspekhi Fizicheskikh Nauk 193 1205 (2023)
  4. Khetselius O Yu, Ternovsky V B et al Progress In Theoretical Chemistry And Physics Vol. Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and BiologyElectron-β-Nuclear Spectroscopy of Atomic Systems and Many-Body Perturbation Theory Approach to Computing β-Decay Parameters33 Chapter 4 (2021) p. 59
  5. Angelescu A, Leng R et al Phys. Rev. D 101 (7) (2020)
  6. Nanosist. Nanomater. Nanotehnol. 18 (2) (2020)
  7. Khetselius O Yu, Glushkov A V et al Progress In Theoretical Chemistry And Physics Vol. Advances in Quantum Systems in Chemistry, Physics, and BiologyHyperfine and Electroweak Interactions in Heavy Finite Fermi Systems and Parity Non-conservation Effect32 Chapter 4 (2020) p. 65
  8. Yu Kh O, Glushkov A V et al J. Phys.: Conf. Ser. 905 012029 (2017)
  9. Loginov E K Int. J. Mod. Phys. A 31 1650102 (2016)
  10. Lanev A V Uspekhi Fizicheskikh Nauk 184 996 (2014) [Lanyov A V Phys.-Usp. 57 923 (2014)]
  11. Da Rold L, Delaunay C et al J. High Energ. Phys. 2013 (2) (2013)
  12. Ivanov I P Phys. Part. Nuclei Lett. 9 657 (2012)
  13. Levkov D G, Rubakov V A et al Physics Letters B 716 350 (2012)
  14. Álvarez-Gaumé L, Vázquez-Mozo M Á Lecture Notes In Physics Vol. An Invitation to Quantum Field TheoryThe Origin of Mass839 Chapter 10 (2012) p. 193
  15. Troitsky S V Uspekhi Fizicheskikh Nauk 182 77 (2012)
  16. Rubakov V A Uspekhi Fizicheskikh Nauk 182 1017 (2012)
  17. Nishiwaki K, Oda Kin-ya Eur. Phys. J. C 71 (11) (2011)
  18. Berge S, Bernreuther W et al Phys. Rev. D 84 (11) (2011)
  19. Amusia M Ya Fullerenes, Nanotubes And Carbon Nanostructures 18 353 (2010)
  20. Quigg Ch Annu. Rev. Nucl. Part. Sci. 59 505 (2009)
  21. Ashoorioon A, Konstandin T J. High Energy Phys. 2009 086 (2009)
  22. Rubakov V A Uspekhi Fizicheskikh Nauk 177 407 (2007)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions