Issues

 / 

2006

 / 

February

  



Critical size in ferroelectric nanostructures


Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii prosp. 59, Moscow, 119333, Russian Federaion

Recently, several attempts have been made to determine the critical size in ferroelectricity. Due to the development of ferroelectric nanostructure technology, this fundamental problem had also become crucial for applied research. It is shown that although the theory predicts the existence of a finite critical size, ferroelectric polarization and its switching can be observed in monolayer films, at least in the case of ferroelectric vinylidene fluoride-trifluoroethylene copolymer P[VDF-TrFE] films prepared by the Langmuir-Blodgett method. The experimental search for the critical size in perovskite ferroelectrics is briefly reviewed. It is shown that the Landau-Ginzburg theory predicts the critical size to be infinitely small if the extrinsic effect of the film-electrode strain mismatch is taken into account. Special features of the switching dynamics of ultrathin ferroelectric films are also considered.

Fulltext pdf (337 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n02ABEH005840
PACS: 05.70.Np, 77.80.−e, 77.84.Jd (all)
DOI: 10.1070/PU2006v049n02ABEH005840
URL: https://ufn.ru/en/articles/2006/2/c/
000238659100003
2-s2.0-33745651354
2006PhyU...49..193F
Citation: Fridkin V M "Critical size in ferroelectric nanostructures" Phys. Usp. 49 193–202 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Фридкин В М «Критический размер в сегнетоэлектрических наноструктурах» УФН 176 203–212 (2006); DOI: 10.3367/UFNr.0176.200602c.0203

References (57) ↓ Cited by (66)

  1. Onsager L Phys. Rev. 65 117 (1944)
  2. Landau L D, Lifshits E M Statisticheskaya Fizika (M.: Nauka, 1964)
  3. Ginzburg V L Zh. Eksp. Teor. Fiz. 15 739 (1945)
  4. Ginzburg V L Zh. Eksp. Teor. Fiz. 19 36 (1949)
  5. Ishikawa K, Yoshikawa K, Okada N Phys. Rev. B 37 5852 (1988)
  6. Palto S P et al. Ferroelectr. Lett. 19 65 (1995)
  7. Bune A V et al. Nature 391 874 (1998)
  8. Qu H et al. Appl. Phys. Lett. 82 4322 (2003)
  9. Fridkin V et al. Ferroelectrics 314 37 (2005)
  10. Tagantsev A Integr. Ferroelectrics 16 237 (1997)
  11. Auciello O, Scott J F, Ramesh R Phys. Today 51 (7) 22 (1998)
  12. Kohlstedt H, Pertsev N A, Waser R Mat. Res. Soc. Symp. Proc. 688 651 (2002)
  13. Batra I P, Silverman B D Solid State Commun. 11 291 (1972)
  14. Scott J F Ferroelectr. Rev. 1 1 (1998)
  15. Li S et al. Phys. Lett. A 212 341 (1996)
  16. Yanase N et al. Jpn. J. Appl. Phys. 38 5305 (1999)
  17. Karasawa J et al. Integr. Ferroelectrics 12 105 (1996)
  18. Li S et al. Jpn. J. Appl. Phys. 36 5169 (1997)
  19. Maruyama T et al. Appl. Phys. Lett. 73 3524 (1998)
  20. Tybell T, Ahn C H, Triscone J-M Appl. Phys. Lett. 75 856 (1999)
  21. Ghosez Ph, Rabe K M Appl. Phys. Lett. 76 2767 (2000)
  22. Zembilgotov A G et al. J. Appl. Phys. 91 2247 (2002)
  23. Blinov L M i dr. Usp. Fiz. Nauk 170 247 (2000); Blinov L M Phys. Usp. 43 243 (2000); Ducharme S et al. Phys. Rev. Lett. 84 175 (2000)
  24. Furukawa T Ferroelectrics 57 63 (1984)
  25. Ahn C H, Rabe K M, Triscone J-M Science 303 488 (2004)
  26. Prasertchoung S et al. Appl. Phys. Lett. 84 3130 (2004)
  27. Fong D D et al. Science 304 1650 (2004)
  28. Kim Y S et al. in Proc. of the Workshop Nanoelectronics Days 2005, Abstract book, Forschungszentrum Jülich (2005) p. 49
  29. Naumov I I, Bellaiche L, Fu H Nature 432 737 (2004)
  30. Sannikov D G, Zheludev I S Fiz. Tverd. Tela 27 1369 (1985)
  31. Tilley D R, Žekš B Solid State Commun. 49 823 (1984)
  32. Tilley D R In Ferroelectric Thin Films: Synthesis And Basic Properties (Ferroelectricity and Related Phenomena, Vol. 10, Eds C Paz de Araujo, J F Scott, G W Taylor) (Amsterdam: Gordon and Breach, 1996) p. 11
  33. Wang C L, Zhong W L, Zhang P L J. Phys. Condens. Matter 4 4743 (1992)
  34. Qu B D Ferroelectrics 152 219 (1994)
  35. Lines M E, Glass A M Principles And Applications Of Ferroelectrics And Related Materials (Oxford: Clarendon Press, 1977)
  36. de Gennes P G Solid State Commun. 1 132 (1963)
  37. Cottam M G, Tilley D R, Zeks B J. Phys. C 17 1793 (1984)
  38. Glinchuk M D, Morozovska A N J. Phys. Condens. Matter 16 3517 (2004)
  39. Spaldin N A Science 304 1606 (2004)
  40. Fridkin V M J. Phys. Condens. Matter 16 7599 (2004)
  41. Ivanov O B, Shport D A, Maksimov E G Zh. Eksp. Teor. Fiz. 144 333 (1998)
  42. Maksimov E G, Zinenko V I, Zamkova N G Usp. Fiz. Nauk 174 1145 (2004); Maksimov E G, Zinenko V I, Zamkova N G Phys. Usp. 47 1075 (2004)
  43. Ghosez Ph, Rabe K M Appl. Phys. Lett. 76 2767 (2000)
  44. Meyer B, Vanderbilt D Phys. Rev. B 63 205426 (2001)
  45. Junquera J, Ghosez P Nature 422 506 (2003)
  46. Lohse O et al. J. Appl. Phys. 89 2332 (2001)
  47. Tagantsev A K et al. Phys. Rev. B 66 214109 (2002)
  48. Orihara H, Hashimoto S, Ishibashi Y J. Phys. Soc. Jpn. 63 1031 (1994); Hashimoto S, Orihara H, Ishibashi Y J. Phys. Soc. Jpn. 63 1601 (1994)
  49. Vizdrik G et al. Phys. Rev. B 68 094113 (2003)
  50. Geivandov A R i dr. Zh. Eksp. Teor. Fiz. 126 99 (2004)
  51. Fridkin V et al. Ferroelectrics 314 37 (2005)
  52. Ducharme S, Fridkin V, Ievlev A, Verkhovskaya K Appl. Phys. Lett., in press
  53. Landau L D, Khalatnikov I M Dokl. Akad. Nauk SSSR 96 469 (1954)
  54. Sorokin A V, Fridkin V M, Ducharme S J. Appl. Phys. 98 044107 (2005)
  55. Kliem H, Tadros-Morgane R J. Physics D 38 1860 (2005)
  56. Ginzburg V L Usp. Fiz. Nauk 169 419 (1999); Ginzburg V L Phys. Usp. 42 353 (1999)
  57. Ginzburg V L Usp. Fiz. Nauk 174 1240 (2004); Ginzburg V L Phys. Usp. 47 1155 (2004)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions