Issues

 / 

2006

 / 

November

  



On the possibility of selecting molecules embedded in superfluid helium nanodroplets (clusters)


Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation

Methods for producing beams of nanometer-sized superfluid helium droplets and techniques for embedding single molecules and clusters in them open up many possibilities for spectroscopy, as well as providing insight into many physical and chemical processes occurring on the atomic and molecular level at extremely low temperatures (T ≤ 0.4 K). In this paper, results of investigations into the possibility of selecting molecules embedded in superfluid helium nanodroplets (clusters) are reviewed. The method proposed starts with the selective vibrational excitation of cluster-embedded molecules by intense IR laser radiation (which greatly reduces the size of the excited clusters), followed by size-separating the clusters via scattering the cluster beam from a crossing molecular (atomic) beam. It is shown that molecules of a particular isotope (component) composition can be selected with this method. The advantages and disadvantages of the method are discussed. Methods for creating and doping helium nanodroplets and some other examples of their applications are also outlined.

Fulltext pdf (350 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n11ABEH005941
PACS: 28.60.+s, 33.80.−b, 36.40.−c, 42.62.Fi (all)
DOI: 10.1070/PU2006v049n11ABEH005941
URL: https://ufn.ru/en/articles/2006/11/b/
000245010300002
2-s2.0-33947624667
2006PhyU...49.1131M
Citation: Makarov G N "On the possibility of selecting molecules embedded in superfluid helium nanodroplets (clusters)" Phys. Usp. 49 1131–1150 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Макаров Г Н «О возможности селекции молекул, внедренных в нанокапельки (кластеры) сверхтекучего гелия» УФН 176 1155–1176 (2006); DOI: 10.3367/UFNr.0176.200611b.1155

References (181) Cited by (21) ↓

  1. Makarov G N Uspekhi Fizicheskikh Nauk 190 264 (2020) [Makarov G N Phys.-Usp. 63 245 (2020)]
  2. Apatin V M, Lokhman V N et al Opt. Spectrosc. 127 61 (2019)
  3. Petin A N, Makarov G N Quantum Electron. 49 593 (2019)
  4. Apatin V M, Lokhman V N et al J. Exp. Theor. Phys. 125 531 (2017)
  5. Makarov G N Uspekhi Fizicheskikh Nauk 187 241 (2017)
  6. Apatin V M, Lokhman V N et al Jetp Lett. 104 425 (2016)
  7. Apatin V M, Lokhman V N et al Laser Phys. Lett. 12 016002 (2015)
  8. Makarov G N Uspekhi Fizicheskikh Nauk 185 717 (2015) [Makarov G N Phys.-Usp. 58 670 (2015)]
  9. Apatin V M, Lokhman V N et al J. Exp. Theor. Phys. 120 191 (2015)
  10. Makarov G N, Petin A N J. Exp. Theor. Phys. 119 398 (2014)
  11. Zeng T, Roy P-N Rep. Prog. Phys. 77 046601 (2014)
  12. Makarov G N, Petin A N Jetp Lett. 97 76 (2013)
  13. Apatin V M, Lokhman V N et al Jetp Lett. 97 697 (2013)
  14. Cleaver R M, Lindsay C M Cryogenics 52 389 (2012)
  15. Makarov G N Uspekhi Fizicheskikh Nauk 181 365 (2011)
  16. Makarov G N, Petin A N Jetp Lett. 93 109 (2011)
  17. Makarov G N, Petin A N Jetp Lett. 90 642 (2010)
  18. Makarov G N, Petin A N J. Exp. Theor. Phys. 110 568 (2010)
  19. Makarov G N Uspekhi Fizicheskikh Nauk 180 185 (2010)
  20. Makarov G N, Petin A N J. Exp. Theor. Phys. 107 725 (2008)
  21. Makarov G N Uspekhi Fizicheskikh Nauk 178 337 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions