Issues

 / 

2004

 / 

June

  

Reviews of topical problems


Electromagnetic waves in a magnetized plasma near the critical surface


National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation.

Fulltext pdf (447 KB)
Fulltext is also available at DOI: 10.1070/PU2004v047n06ABEH001714
PACS: 41.20.Jb, 52.35.Hr, 52.55.Hc (all)
DOI: 10.1070/PU2004v047n06ABEH001714
URL: https://ufn.ru/en/articles/2004/6/b/
000224250600002
2004PhyU...47..555T
Citation: Timofeev A V "Electromagnetic waves in a magnetized plasma near the critical surface" Phys. Usp. 47 555–582 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Тимофеев А В «Волны в плазме в магнитном поле вблизи критической поверхности» УФН 174 609–637 (2004); DOI: 10.3367/UFNr.0174.200406b.0609

References (36) ↓ Cited by (34) Similar articles (20)

  1. Ginzburg V L Rasprostranenie Elektromagnitnykh Voln v Plazme (M.: Nauka, 1967)
  2. Zheleznyakov V V Radioizluchenie Solntsa i Planet (M.: Nauka, 1964)
  3. Zheleznyakov V V Elektromagnitnye Volny v Kosmicheskoi Plazme (M.: Nauka, 1977)
  4. Devis K Radiovolny v Ionosfere (M.: Mir, 1973)
  5. Poeverlein H Z. Phys. 2 152 (1950)
  6. Ginzburg V J. Phys. USSR 7 289 (1943)
  7. Preinhalter J, Kopecky V J. Plasma Phys. 10 1 (1973)
  8. Zharov A A Fizika Plazmy 10 1109 (1984)
  9. Mjolhus J J. Plasma Phys. 31 7 (1984)
  10. Tokman M D Fizika Plazmy 11 1205 (1985)
  11. Timofeev A V Fizika Plazmy 26 874 (2000)
  12. Timofeev A V Fizika Plazmy 27 978 (2001)
  13. Zharov A A, Sergeev M D, Tokman M D Fizika Plazmy 12 1074 (1986)
  14. Timofeev A V Fizika Plazmy 27 1046 (2001)
  15. Timofeev A V Fizika Plazmy 29 742 (2003)
  16. Tsytovich V N Nelineinye Effekty v Plazme (M.: Nauka, 1967)
  17. Timofeev A V Fizika Plazmy 27 282 (2001)
  18. Timofeev A V Rezonansnye Yavleniya v Kolebaniyakh Plazmy (M.: Fizmatlit, 2000)
  19. Stiks T Teoriya Plazmennykh Voln (M.: Atomizdat, 1965)
  20. Chen F F Phys. Plasmas 3 1783 (1996)
  21. Ellis V, Buksbaum S, Bers A Volny v Anizotropnoi Plazme (M.: Atomizdat, 1966)
  22. Booker H G Philos. Trans. R. Soc. London A 237 411 (1939)
  23. Melrose D B Aust. J. Phys. 33 121 (1980)
  24. Budden K G J. Atmos. Terr. Phys. 42 287 (1980)
  25. Laqua H P et al. Phys. Rev. Lett. 78 3467 (1997)
  26. Laqua H P, Hartfuß H J, W7-AS Team Phys. Rev. Lett. 81 2060 (1998)
  27. Laqua H P, the W7-AS Team, the ECRH Group Plasma Phys. Control. Fusion 41 A273 (1999)
  28. Barston E M Ann. Physics 29 282 (1964)
  29. Abramovits M, Stigan I (Red.) Spravochnik Po Spetsial’nym Funktsiyam s Formulami, Grafikami i Matematicheskimi Tablitsami (M.: Nauka, 1979)
  30. Piliya A D, Fedorov V I v Sb. Vysokochastotnyi Nagrev Plazmy: Materialy Vsesoyuz. Soveshch. (Pod Red. A G Litvaka) (Gor’kii: IPF, 1983) p. 281
  31. Landau L D, Lifshits E M Gidrodinamika (M.: Nauka, 1986)
  32. Timofeev A V Fizika Plazmy 27 131 (2001)
  33. Timofeev A V Fizika Plazmy 28 984 (2002)
  34. Timofeev A V, unpublished
  35. Smolyakova O B, Tokman M D Fizika Plazmy 26 833 (2000)
  36. Nagasaki K, Yanagi N Plasma Phys. Control. Fusion 44 409 (2002)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions