Issues

 / 

2004

 / 

June

  

Reviews of topical problems


Electromagnetic waves in a magnetized plasma near the critical surface


National Research Centre Kurchatov Institute, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

Electromagnetic waves in a plasma in a magnetic field give rise to enhanced refraction, produce a change in polarization, and cause electromagnetic energy to flow from one wave mode to another when propagating near the critical surface (CS), the one where the electron Langmuir frequency is equal to the wave frequency. A simple unified model of all phenomena taking place near the CS is proposed. These phenomena are due to electromagnetic waves linearly interacting with electron Langmuir oscillations which are localized at the CS in a cold plasma. This interaction manifests itself most strikingly in electron Langmuir oscillation energy escaping directly into a vacuum in the form of electromagnetic radiation.

Fulltext is available at IOP
PACS: 41.20.Jb, 52.35.Hr, 52.55.Hc (all)
DOI: 10.1070/PU2004v047n06ABEH001714
URL: https://ufn.ru/en/articles/2004/6/b/
Citation: Timofeev A V "Electromagnetic waves in a magnetized plasma near the critical surface" Phys. Usp. 47 555–582 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:    «     » 174 609–637 (2004); DOI: 10.3367/UFNr.0174.200406b.0609

References (36) Cited by (28) ↓ Similar articles (20)

  1. Khusainov T A, Gospodchikov E D Plasma Phys. Rep. 46 992 (2020)
  2. Arzhannikov A V, Ivanov I A et al Plasma Phys. Control. Fusion 62 045002 (2020)
  3. Sakharov A S Plasma Phys. Rep. 45 289 (2019)
  4. Shalashov A G, Gospodchikov E D et al Plasma Phys. Control. Fusion 60 105009 (2018)
  5. Khusainov T A, Shalashov A G, Gospodchikov E D Plasma Phys. Rep. 44 484 (2018)
  6. Sakharov A S J. Phys.: Conf. Ser. 1094 012011 (2018)
  7. Tereshchenko M A Plasma Phys. Rep. 43 18 (2017)
  8. Sakharov A S Plasma Phys. Rep. 43 1065 (2017)
  9. Arzhannikov A V, Burdakov A V et al IEEE Trans. THz Sci. Technol. 6 245 (2016)
  10. Popov A Plasma Phys. Control. Fusion 57 025010 (2015)
  11. Arzhannikov A V, Thumm M K A et al IEEE Trans. THz Sci. Technol. 5 478 (2015)
  12. Timofeev I V, Annenkov V V, Arzhannikov A V Physics Of Plasmas 22 113109 (2015)
  13. Shalashov A G, Gospodchikov E D Plasma Phys. Control. Fusion 56 125011 (2014)
  14. Arzhannikov A V, Burdakov A V et al Physics Of Plasmas 21 082106 (2014)
  15. Khusainov T A, Gospodchikov E D, Shalashov A G Plasma Phys. Rep. 38 83 (2012)
  16. Vodopyanov A V, Golubev S V et al Plasma Phys. Rep. 38 443 (2012)
  17. Shalashov A G, Gospodchikov E D Plasma Phys. Control. Fusion 52 115001 (2010)
  18. Poli E Fusion Science And Technology 53 1 (2008)
  19. Shalashov A G, Gospodchikov E D Plasma Phys. Control. Fusion 50 045005 (2008)
  20. Gospodchikov E D, Shalashov A G, Suvorov E V Fusion Science And Technology 53 261 (2008)
  21. Kulygin V M, Arsenin V V et al Nucl. Fusion 47 738 (2007)
  22. Gospodchikov E D, Shalashov A G, Suvorov E V 2007 International Kharkiv Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW), (2007) p. 992
  23. Gospodchikov E D, Smolyakova O B, Suvorov E V Plasma Phys. Rep. 33 427 (2007)
  24. Popov A Yu, Piliya A D Plasma Phys. Rep. 33 109 (2007)
  25. Gospodchikov E D, Shalashov A G, Suvorov E V Plasma Phys. Control. Fusion 48 869 (2006)
  26. Kaizr V Czech J Phys 56 B255 (2006)
  27. Shalashov A G, Gospodchikov E D, Suvorov E V J. Exp. Theor. Phys. 103 480 (2006)
  28. Balakina M A, Shalashov A G et al Radiophys Quantum Electron 49 617 (2006)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions