Issues

 / 

2004

 / 

January

  

Reviews of topical problems


Vacuum, confinement, and QCD strings in the vacuum correlator method

, ,
Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

QCD vacuum properties and the structure of color fields in hadrons are reviewed using the complete set of gauge-invariant gluon field correlators. QCD confinement is produced by correlators with a certain Lorentz structure, which violate the Abelian Bianchi identities and are therefore absent in QED. These correlators are used to define an effective colorless field satisfying the Maxwell equations with a nonzero effective magnetic current. In the language of correlators and the effective field, it is shown that non-Abelian interaction of gluon gauge fields leads to quark confinement due to effective circular magnetic currents that squeeze gluon fields into a string in accordance with the ’dual Meissner effect’. Distributions of effective gluon fields in mesons, baryons, and glueballs with static sources are plotted.

Fulltext pdf (532 KB)
Fulltext is also available at DOI: 10.1070/PU2004v047n01ABEH001696
PACS: 11.15.−q, 12.38.Aw, 12.38.Lg (all)
DOI: 10.1070/PU2004v047n01ABEH001696
URL: https://ufn.ru/en/articles/2004/1/a/
000221476600001
2004PhyU...47....1K
Citation: Kuz’menko D S, Simonov Yu A, Shevchenko V I "Vacuum, confinement, and QCD strings in the vacuum correlator method" Phys. Usp. 47 1–15 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Êóçüìåíêî Ä Ñ, Ñèìîíîâ Þ À, Øåâ÷åíêî Â È «Âàêóóì, êîíôàéíìåíò è ñòðóêòóðû ÊÕÄ â ìåòîäå âàêóóìíûõ êîððåëÿòîðîâ» ÓÔÍ 174 3–18 (2004); DOI: 10.3367/UFNr.0174.200401a.0003

References (106) Cited by (37) Similar articles (20) ↓

  1. Yu.A. Simonov “The confinement39 313–336 (1996)
  2. M.A. Andreichikov, B.O. Kerbikov, Yu.A. Simonov “Hadron physics in magnetic fields62 319–339 (2019)
  3. V.G. Bornyakov, M.I. Polikarpov et alColor confinement and hadron structure in lattice chromodynamics47 17–35 (2004)
  4. Yu.S. Kalashnikova, A.V. Nefed’ev, J.E.F.T. Ribeiro “Chiral symmetry and the properties of hadrons in the Generalized Nambu—Jona-Lasinio model60 667–693 (2017)
  5. V.A. Novikov “Nonperturbative QCD and supersymmetric QCD47 109–116 (2004)
  6. Yu.S. Kalashnikova, A.V. Nefed’ev “Two-dimensional QCD in the Coulomb gauge45 347–368 (2002)
  7. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theories38 591–607 (1995)
  8. Yu.M. Makeenko “The Monte Carlo method in lattice gauge theories27 401–430 (1984)
  9. I.V. Andreev “Chromodynamics as a theory of the strong interaction29 971–979 (1986)
  10. M.A. Shifman “Anomalies and low-energy theorems of quantum chromodynamics32 289–309 (1989)
  11. G.V. Pakhlova, P.N. Pakhlov, S.I. Eidel’man “Exotic charmonium53 219–241 (2010)
  12. I.I. Roizen, E.L. Feinberg, O.D. Chernavskaya “Color deconfinement and subhadronic matter: phase states and the role of constituent quarks47 427–446 (2004)
  13. L.V. Prokhorov, S.V. Shabanov “Phase space of mechanical systems with a gauge group34 (2) 108–140 (1991)
  14. M.A. Ol’shanetskii “A short guide to modern geometry for physicists25 123–129 (1982)
  15. K.N. Mukhin, O.O. Patarakin “Δ isobar in nuclei (review of experimental data)38 803–844 (1995)
  16. A.A. Migdal “Stochastic quantization of field theory29 389–411 (1986)
  17. A.Yu. Potekhin “The physics of neutron stars53 1235–1256 (2010)
  18. I.Yu. Kobzarev, B.V. Martem’yanov, M.G. Shchepkin “Orbitally excited hadrons35 (4) 257–275 (1992)
  19. V.A. Matveev, V.A. Rubakov et alNonconservation of baryon number under extremal conditions31 916–939 (1988)
  20. V.I. Zakharov “Lattice SU(2) theory projected on scalar particles47 37–44 (2004)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions