Issues

 / 

2003

 / 

June

  

Reviews of topical problems


Shape memory ferromagnets

 a, b, c,  d,  e,  f, g,  h
a Department of Theoretical Physics, Institute of Physics, St. Petersburg State University, ul. Ulyanovskaya 1, Petrodvorez, St. Petersburg, 198904, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
d Chelyabinsk State University, ul. Bratev Kashirinykh 129, Chelyabinsk, 454021, Russian Federation
e Institute of Fluid Science, Tohoku University, Sendai, Japan
f National Institute of Advanced Industrial Science and Technology, Tohoku Center 4-2-1, Nigatake, Miyagino-ku, Sendai, 983-8551, Japan
g Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, Moscow, 125009, Russian Federation
h G.V. Kurdyumov Institite ofMetal Science and Physics, State Research Centre ofthe Russian Federation, I.P. Bardin Central Research Institute ofFerrous Metallurgy, 2-ya Baumanskaya ul. 9/23, Moscow, 105005, Russian Federation

In ferromagnetic alloys with shape memory large reversible strains can be obtained by rearranging the martensitic domain structure by a magnetic field. Magnetization through displacement of domain walls is possible in the presence of high magnetocrystalline anisotropy, when martensitic structure rearrangement is energetically favorable compared to the reorientation of magnetic moments. In ferromagnetic Heusler alloys Ni2+xMn1-xGa the Curie temperature exceeds the martensitic transformation temperature. The fact that these two temperatures are close to room temperature offers the possibility of magnetically controlling the shape and size of ferromagnets in the martensitic state. In Ni2+xMn1-xGa single crystals, a reversible strain of ~6% is obtained in fields of ~1 T.

Fulltext is available at IOP
PACS: 62.20.Fe, 75.30.Kz, 75.80.+q, 81.30.Kf (all)
DOI: 10.1070/PU2003v046n06ABEH001339
URL: https://ufn.ru/en/articles/2003/6/a/
Citation: Vasil’ev A N, Buchel’nikov V D, Takagi T, Khovailo V V, Estrin E I "Shape memory ferromagnets" Phys. Usp. 46 559–588 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:   ,   ,  ,   ,    «   » 173 577–608 (2003); DOI: 10.3367/UFNr.0173.200306a.0577

References (250) Cited by (218) Similar articles (20) ↓

  1. E.A. Turov, V.G. Shavrov “Broken symmetry and magnetoacoustic effects in ferroand antiferromagnetics26 593–611 (1983)
  2. V.I. Ozhogin, V.L. Preobrazhenskii “Anharmonicity of mixed modes and giant acoustic nonlinearity of antiferromagnetics31 713–729 (1988)
  3. V.D. Buchel’nikov, A.N. Vasil’ev “Electromagnetic generation of ultrasound in ferromagnets35 (3) 192–211 (1992)
  4. V.Yu. Irkhin, M.I. Katsnel’son “Half-metallic ferromagnets37 659–676 (1994)
  5. A.S. Andreenko, K.P. Belov et alMagnetocaloric effects in rare-earth magnetic materials32 649–664 (1989)
  6. G.A. Malygin “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect44 173 (2001)
  7. K.P. Belov, R.Z. Levitin, S.A. Nikitin “Ferromagnetism and antiferromagnetism of rare-earth metals7 179–208 (1964)
  8. A.L. Roitburd “The theory of the formation of a heterophase structure in phase transformations in solids17 326–344 (1974)
  9. E.M. Nadgornyi, Yu.A. Osip’yan et alFilamentary crystals with almost the theoretical strength of perfect crystals2 282–304 (1959)
  10. K.G. Gurtovoi, R.Z. Levitin “Magnetism of actinides and their compounds30 827–850 (1987)
  11. G.A. Malygin “Dislocation self-organization processes and crystal plasticity42 887 (1999)
  12. M.P. Kashchenko, V.G. Chashchina “Dynamic model of supersonic martensitic crystal growth54 331–349 (2011)
  13. E.L. Nagaev “Anomalous magnetic structures and phase transitions in non-Heisenberg magnetic materials25 31–57 (1982)
  14. N.P. Grazhdankina “Magnetic first order phase transitions11 727–745 (1969)
  15. Yu.V. Gulyaev, I.E. Dikshtein, V.G. Shavrov “Magnetoacoustic surface waves in magnetic crystals near spin-reorientation phase transitions40 701–716 (1997)
  16. R.B. Morgunov “Spin micromechanics in the physics of plasticity47 125–147 (2004)
  17. A.V. Golenishchev-Kutuzov, V.A. Golenishchev-Kutuzov, R.I. Kalimullin “Induced domains and periodic domain structures in electrically and magnetically ordered materials43 647–662 (2000)
  18. S.M. Stishov, A.E. Petrova “Itinerant helimagnet MnSi54 1117–1130 (2011)
  19. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformation35 (6) 455–480 (1992)
  20. V.I. Karas’, V.I. Sokolenko “Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields61 1051–1071 (2018)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions