Reviews of topical problems

Dissipation and decoherence in quantum systems

Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system’s interaction with its environment (reservoir) be taken into account. Since information about the system is ’recorded’ in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically.

Fulltext is available at IOP
PACS: 03.65.−w, 03.65.Ta, 03.65.Yz (all)
DOI: 10.1070/PU2003v046n11ABEH001680
Citation: Menskii M B "Dissipation and decoherence in quantum systems" Phys. Usp. 46 1163–1182 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Менский М Б «Диссипация и декогеренция квантовых систем» УФН 173 1199–1219 (2003); DOI: 10.3367/UFNr.0173.200311d.1199

References (66) Cited by (23) Similar articles (20) ↓

  1. M.B. Menskii “Decoherence and the theory of continuous quantum measurements41 923–940 (1998)
  2. M.B. Menskii “Concept of consciousness in the context of quantum mechanics48 389–409 (2005)
  3. M.B. Menskii “Quantum mechanics: new experiments, new applications, and new formulations of old questions43 585–600 (2000)
  4. K.A. Valiev “Quantum computers and quantum computations48 1–36 (2005)
  5. A.A. Grib “Bell’s inequalities and experimental verification of quantum correlations at macroscopic distances27 284–293 (1984)
  6. I.V. Bargatin, B.A. Grishanin, V.N. Zadkov “Entangled quantum states of atomic systems44 597–616 (2001)
  7. V.B. Braginskii, Yu.I. Vorontsov “Quantum-mechanical limitations in macroscopic experiments and modern experimental technique18 644–650 (1975)
  8. Yu.I. Vorontsov “The phase of an oscillator in quantum theory. What is it ’in reality’?45 847–868 (2002)
  9. Ya.A. Smorodinskii, A.L. Shelepin, L.A. Shelepin “Groups and probabilities at the foundations of quantum mechanics35 (12) 1005–1051 (1992)
  10. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  11. I.M. Suslov “Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition41 441–467 (1998)
  12. B.I. Spasskii, A.V. Moskovskii “Nonlocality in quantum physics27 273–283 (1984)
  13. Yu.L. Klimontovich “Problems of statistical theory of interaction of atoms with radiation13 480–494 (1971)
  14. M.A. Tsyganov, V.N. Biktashev et alWaves in systems with cross-diffusion as a new class of nonlinear waves50 263–286 (2007)
  15. S.Ya. Kilin “Quantum information42 435–452 (1999)
  16. H.D. Abarbanel, M.I. Rabinovich et alSynchronisation in neural networks39 337–362 (1996)
  17. S.I. Vinitskii, V.L. Derbov et alTopological phases in quantum mechanics and polarization optics33 (6) 403–428 (1990)
  18. V.B. Braginskii “Resolution in macroscopic measurements: progress and prospects31 836–849 (1988)
  19. D.I. Blokhintsev “Interaction of a microsystem with a measuring instrument11 320–327 (1968)
  20. E.L. Feinberg “On the ’special role’ of the electromagnetic potentials in quantum mechanics5 753–760 (1963)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions