Issues

 / 

2002

 / 

November

  

Methodological notes


Chemical localization


Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation

The possibility that, in spite of high valence electron concentrations, metal-insulator transitions can in principle occur in materials composed of atoms of only metallic elements is demonstrated based on the analysis of experimental data. For such a transition to occur, stable atomic configurations forming deep potential wells capable of trapping dozens of valence electrons should appear in the system. This means, in essence, that bulk metallic medium transforms into an assembly of identical quantum dots. Depending on the parameters, such a material either does contain delocalized electrons (metal) or does not contain such electrons (insulator). The degree of dis- order is one of these parameters. Two types of substances with such properties are discussed: liquid binary alloys with both components being metallic, and thermodynamically stable quasicrystals.

Fulltext pdf (334 KB)
Fulltext is also available at DOI: 10.1070/PU2002v045n11ABEH001246
PACS: 71.23.−k, 71.30.+h, 72.15.Rn (all)
DOI: 10.1070/PU2002v045n11ABEH001246
URL: https://ufn.ru/en/articles/2002/11/d/
000181345500004
Citation: Gantmakher V F "Chemical localization" Phys. Usp. 45 1165–1174 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гантмахер В Ф «Химическая локализация» УФН 172 1283–1293 (2002); DOI: 10.3367/UFNr.0172.200211d.1283

References (28) Cited by (31) ↓ Similar articles (5)

  1. Agazhanov A Sh, Khairulin R A et al Journal Of Molecular Liquids 424 127090 (2025)
  2. Agazhanov A Sh, Khairulin R A et al Thermophys. Aeromech. 31 (4) 653 (2025)
  3. Agazhanov A Sh, Abdullayev R N et al High Temp 62 (4) 438 (2024)
  4. Agazhanov A Sh, Abdullaev R N et al High Temp 62 (6) 734 (2024)
  5. Khairulin A R, Stankus S V Thermophys. Aeromech. 30 (6) 1157 (2024)
  6. Khairulin R A, Abdullaev R N, Stankus S V Thermophys. Aeromech. 31 (1) 161 (2024)
  7. Khairulin A R, Stankus S V Int J Thermophys 45 (5) (2024)
  8. Agazhanov A Sh, Abdullaev R N et al Physics And Chemistry Of Liquids 61 (4) 253 (2023)
  9. Prekul A F, Shchegolikhina N I Jetp Lett. 115 (3) 119 (2022)
  10. Agazhanov A Sh, Khairulin A R et al J. Engin. Thermophys. 30 (3) 365 (2021)
  11. Prekul A F, Shchegolikhina N I Phys. Metals Metallogr. 122 (11) 1039 (2021)
  12. Khairulin R A, Abdullaev R N, Stankus S V Physics And Chemistry Of Liquids 58 (2) 143 (2020)
  13. Maciá B E Applied Sciences 9 (10) 2132 (2019)
  14. Khairulin R A, Abdullaev R N et al Int J Thermophys 38 (2) (2017)
  15. Prekul A F, Schegolikhina N I Jetp Lett. 103 (9) 603 (2016)
  16. Prekul A, Shchegolikhina N Crystals 6 (9) 119 (2016)
  17. Khairulin R A, Stankus S V, Abdullaev R N Thermophys. Aeromech. 22 (3) 345 (2015)
  18. Prekul A F, Shchegolikhina N I Phys. Solid State 55 (11) 2260 (2013)
  19. Khairulin R A, Stankus S V et al J. Phase Equilib. Diffus. 33 (5) 369 (2012)
  20. Prekul A F, Shchegolikhina N I et al Jetp Lett. 94 (5) 366 (2011)
  21. Vekilov Yu Kh, Chernikov M A Uspekhi Fizicheskikh Nauk 180 (6) 561 (2010)
  22. Borisov A B, Rybakov F N Low Temperature Physics 34 (7) 515 (2008)
  23. Sergeenkov S Journal of Applied Physics 102 (6) (2007)
  24. Menushenkov A P, Rakshun Ya V Crystallogr. Rep. 52 (6) 1006 (2007)
  25. Menushenkov A P, Kashurnikova O V et al Crystallogr. Rep. 52 (6) 1030 (2007)
  26. Dutov A G, Azarko I I et al Crystallogr. Rep. 51 (1) 122 (2006)
  27. Menushenkov A P, Rakshun Ya V et al Jetp Lett. 81 (9) 479 (2005)
  28. Panova G Kh Phys. Solid State 47 (7) 1205 (2005)
  29. Veremeĭchik T F, Galiulin R V Crystallogr. Rep. 49 (6) 887 (2004)
  30. Poklonski N A, Vyrko S A, Zabrodskii A G Phys. Solid State 46 (6) 1101 (2004)
  31. Sergeenkov S A Jetp Lett. 77 (2) 94 (2003)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions