Issues

 / 

2001

 / 

May

  

Reviews of topical problems


Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymers


Sumy State University, ul. Rimskogo-Korsakova 2, Sumy, 244007, Ukraine

A supersymmetric field-theoretical scheme is derived based on the Langevin equation, which enables memory and nonergodicity effects in a nonequilibrium stochastic system with quenched disorder to be described in an optimal manner. This scheme is applied to a disordered heteropolymer whose effective Hamiltonian is found to be simply the free energy as a function of the compositional order parameter. Instead of the Langevin equation, an effective equation of motion is used here to describe the way different monomers alternate as we move along a polymer chain. The isothermal and adiabatic susceptibilities, memory parameter, and irreversible response are determined as functions of the temperature and the intensity of quenched disorder.

Fulltext is available at IOP
PACS: 05.40.−a, 05.70.Ln, 11.30.Pb, 61.41.+e (all)
DOI: 10.1070/PU2001v044n05ABEH000921
URL: https://ufn.ru/en/articles/2001/5/b/
Citation: Olemskoi A I "Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymers" Phys. Usp. 44 479–513 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Олемской А И «Суперсимметричная теория неравновесной стохастической системы в приложении к неупорядоченным гетерополимерам» УФН 171 503–538 (2001); DOI: 10.3367/UFNr.0171.200105b.0503

References (93) Cited by (7) Similar articles (20) ↓

  1. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systems38 1061–1097 (1995)
  2. V.S. Dotsenko “Universal randomness54 259–280 (2011)
  3. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficients58 252–285 (2015)
  4. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  5. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  6. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their uses44 447–478 (2001)
  7. K.G. Selivanov “Counting vacua in supersymmetric Yang-Mills theory45 675–686 (2002)
  8. V.M. Zhdanov, V.I. Roldugin “Non-equilibrium thermodynamics and kinetic theory of rarefied gases41 349–378 (1998)
  9. S.L. Sobolev “Transport processes and traveling waves in systems with local nonequilibrium34 (3) 217–229 (1991)
  10. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer55 1008–1034 (2012)
  11. M.I. Vysotskii “Supersymmetric models of elementary particles—the physics for new-generation accelerators?28 667–693 (1985)
  12. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  13. Yu.V. Gulyaev, A.S. Bugaev et alNanotransport controlled by means of the ratchet effect63 311–326 (2020)
  14. A.A. Slavnov “Supersymmetric gauge theories and their possible applications to the weak and electromagnetic interactions21 240–251 (1978)
  15. V.S. Vikhrenko “Theory of depolarized molecular light scattering17 558–576 (1975)
  16. A.Yu. Grosberg “Disordered polymers40 125–158 (1997)
  17. G.V. Kozlov, V.U. Novikov “A cluster model for the polymer amorphous state44 681–724 (2001)
  18. Yu.G. Rudoi, A.D. Sukhanov “Thermodynamic fluctuations within the Gibbs and Einstein approaches43 1169–1199 (2000)
  19. D.S. Gorbunov, S.L. Dubovskii, S.V. Troitskii “Gauge mechanism of mediation of supersymmetry breaking42 623 (1999)
  20. V.K. Vanag “Study of spatially extended dynamical systems using probabilistic cellular automata42 413–434 (1999)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions