Issues

 / 

2001

 / 

March

  

Reviews of topical problems


Physical methods for measuring the viscosity coefficients of nematic liquid crystals


Central R&D ‘Cometa’, ul. Velozavodskaya 5, Moscow, 109280, Russian Federation

Methods for measuring the viscosity coefficients of the best known type of anisotropic fluid, nematic liquid crystals (NLCs), are reviewed. The hydrodynamic Leslie-Ericksen-Parodi theory is described in brief, which predicts five independent viscosity coefficients for a NLC. The feature that distinguishes NLCs from isotropic liquids is the rotational viscosity, due to energy dissipation caused by NLC reorientation. The shear flow method, methods based on ultrasonic wave propagation and absorption in an anisotropic medium, and the rotating magnetic field technique are described in detail, as well as methods that involve analyzing the Freedericksz transition dynamics (LC reorientation in an electric or magnetic field) and those using light scattering from the thermal fluctuations of the NLC director. In each case, the accuracy of the method is evaluated, its complexity assessed, and the amount of material needed for measurement estimated.

Fulltext pdf (591 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n03ABEH000831
PACS: 61.30.−v, 83.70.Jr, 83.85.Jn (all)
DOI: 10.1070/PU2001v044n03ABEH000831
URL: https://ufn.ru/en/articles/2001/3/b/
Citation: Belyaev V V "Physical methods for measuring the viscosity coefficients of nematic liquid crystals" Phys. Usp. 44 255–284 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Беляев В В «Физические методы измерения коэффициентов вязкости нематических жидких кристаллов» УФН 171 267–298 (2001); DOI: 10.3367/UFNr.0171.200103b.0267

References (158) Cited by (33) Similar articles (20) ↓

  1. A.S. Sonin “Lyotropic nematics30 875–896 (1987)
  2. A.N. Lagar’kov, V.M. Sergeev “Molecular dynamics method in statistical physics21 566–588 (1978)
  3. I.L. Fabelinskii “Macroscopic and molecular shear viscosity40 689–700 (1997)
  4. V.A. Kizel’, Yu.I. Krasilov, V.I. Burkov “Experimental studies of gyrotropy of crystals17 745–773 (1975)
  5. I. Chistyakov “Liquid crystals9 551–573 (1967)
  6. A.B. Severnyi “Magnetic fields of the Sun and stars9 1–30 (1966)
  7. V.P. Romanov, S.V. Ul’yanov “Dynamic properties of smectic films46 915–935 (2003)
  8. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)36 (11) 1020–1052 (1993)
  9. E.M. Aver’yanov, M.A. Osipov “Effects of the local field of a light wave in the molecular optics of liquid crystals33 (5) 365–384 (1990)
  10. I.Ya. Aref’eva “Holographic approach to quark—gluon plasma in heavy ion collisions57 527–555 (2014)
  11. L.M. Blinov, E.I. Kats, A.A. Sonin “Surface physics of thermotropic liquid crystals30 604–619 (1987)
  12. R.B. Morgunov “Spin micromechanics in the physics of plasticity47 125–147 (2004)
  13. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  14. A.V. Andrienko, V.I. Ozhogin et alNuclear spin wave research34 (10) 843–861 (1991)
  15. A.V. Guglielmi “Hydromagnetic diagnostics and geoelectric sounding32 678–696 (1989)
  16. N.A. Tyapunina, É.P. Belozerova “Charged dislocations and properties of alkali halide crystals31 1060–1084 (1988)
  17. B.M. Smirnov “Van der Waals molecules27 1–18 (1984)
  18. V.A. Atsarkin, G.V. Skrotskii et alNMR introscopy24 841–859 (1981)
  19. V.M. Pudalov “Measurements of the magnetic properties of conduction electrons64 3–27 (2021)
  20. Yu.A. Izyumov “Neutron-diffraction studies of magnetic structures of crystals23 356–374 (1980)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions