Reviews of topical problems

Physical methods for measuring the viscosity coefficients of nematic liquid crystals

Central R&D ‘Cometa’, ul. Velozavodskaya 5, Moscow, 109280, Russian Federation

Methods for measuring the viscosity coefficients of the best known type of anisotropic fluid, nematic liquid crystals (NLCs), are reviewed. The hydrodynamic Leslie-Ericksen-Parodi theory is described in brief, which predicts five independent viscosity coefficients for a NLC. The feature that distinguishes NLCs from isotropic liquids is the rotational viscosity, due to energy dissipation caused by NLC reorientation. The shear flow method, methods based on ultrasonic wave propagation and absorption in an anisotropic medium, and the rotating magnetic field technique are described in detail, as well as methods that involve analyzing the Freedericksz transition dynamics (LC reorientation in an electric or magnetic field) and those using light scattering from the thermal fluctuations of the NLC director. In each case, the accuracy of the method is evaluated, its complexity assessed, and the amount of material needed for measurement estimated.

Fulltext is available at IOP
PACS: 61.30.−v, 83.70.Jr, 83.85.Jn (all)
DOI: 10.1070/PU2001v044n03ABEH000831
Citation: Belyaev V V "Physical methods for measuring the viscosity coefficients of nematic liquid crystals" Phys. Usp. 44 255–284 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Беляев В В «Физические методы измерения коэффициентов вязкости нематических жидких кристаллов» УФН 171 267–298 (2001); DOI: 10.3367/UFNr.0171.200103b.0267

References (158) Cited by (24) Similar articles (20) ↓

  1. A.S. Sonin “Lyotropic nematics30 875–896 (1987)
  2. A.N. Lagar’kov, V.M. Sergeev “Molecular dynamics method in statistical physics21 566–588 (1978)
  3. I.L. Fabelinskii “Macroscopic and molecular shear viscosity40 689–700 (1997)
  4. V.A. Kizel’, Yu.I. Krasilov, V.I. Burkov “Experimental studies of gyrotropy of crystals18 745–773 (1975)
  5. I. Chistyakov “Liquid crystals9 551–573 (1967)
  6. V.P. Romanov, S.V. Ul’yanov “Dynamic properties of smectic films46 915–935 (2003)
  7. I.Ya. Aref’eva “Holographic approach to quark—gluon plasma in heavy ion collisions57 527–555 (2014)
  8. V.M. Pudalov “Measurements of the magnetic properties of conduction electrons64 (1) (2021)
  9. R.B. Morgunov “Spin micromechanics in the physics of plasticity47 125–147 (2004)
  10. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)36 (11) 1020–1052 (1993)
  11. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  12. E.M. Aver’yanov, M.A. Osipov “Effects of the local field of a light wave in the molecular optics of liquid crystals33 (5) 365–384 (1990)
  13. A.B. Severnyi “Magnetic fields of the Sun and stars9 1–30 (1966)
  14. A.V. Gurevich, K.P. Zybin “Runaway breakdown and electric discharges in thunderstorms44 1119–1140 (2001)
  15. A.P. Zhernov, A.V. Inyushkin “Kinetic coefficients in isotopically disordered crystals45 527–552 (2002)
  16. A.E. Dubinov, I.Yu. Kornilova, V.D. Selemir “Collective ion acceleration in systems with a virtual cathode45 1109–1129 (2002)
  17. Yu.I. Vorontsov “The phase of an oscillator in quantum theory. What is it ’in reality’?45 847–868 (2002)
  18. V.S. Zapasskii, G.G. Kozlov “Polarized light in an anisotropic medium versus spin in a magnetic field42 817–822 (1999)
  19. A.R. Chelyadinskii, F.F. Komarov “Defect-impurity engineering in implanted silicon46 789–820 (2003)
  20. D.K. Belashchenko “Diffusion mechanisms in disordered systems: computer simulation42 297–319 (1999)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions