Issues

 / 

2001

 / 

March

  

Reviews of topical problems


Physical methods for measuring the viscosity coefficients of nematic liquid crystals


Central R&D ‘Cometa’, ul. Velozavodskaya 5, Moscow, 109280, Russian Federation

Methods for measuring the viscosity coefficients of the best known type of anisotropic fluid, nematic liquid crystals (NLCs), are reviewed. The hydrodynamic Leslie-Ericksen-Parodi theory is described in brief, which predicts five independent viscosity coefficients for a NLC. The feature that distinguishes NLCs from isotropic liquids is the rotational viscosity, due to energy dissipation caused by NLC reorientation. The shear flow method, methods based on ultrasonic wave propagation and absorption in an anisotropic medium, and the rotating magnetic field technique are described in detail, as well as methods that involve analyzing the Freedericksz transition dynamics (LC reorientation in an electric or magnetic field) and those using light scattering from the thermal fluctuations of the NLC director. In each case, the accuracy of the method is evaluated, its complexity assessed, and the amount of material needed for measurement estimated.

Fulltext pdf (591 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n03ABEH000831
PACS: 61.30.−v, 83.70.Jr, 83.85.Jn (all)
DOI: 10.1070/PU2001v044n03ABEH000831
URL: https://ufn.ru/en/articles/2001/3/b/
Citation: Belyaev V V "Physical methods for measuring the viscosity coefficients of nematic liquid crystals" Phys. Usp. 44 255–284 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Áåëÿåâ Â Â «Ôèçè÷åñêèå ìåòîäû èçìåðåíèÿ êîýôôèöèåíòîâ âÿçêîñòè íåìàòè÷åñêèõ æèäêèõ êðèñòàëëîâ» ÓÔÍ 171 267–298 (2001); DOI: 10.3367/UFNr.0171.200103b.0267

References (158) Cited by (32) ↓ Similar articles (20)

  1. Gavrilyak A M, Gavrilyak M V et al MMPh 17 (2) 69 (2025)
  2. Singh Sh Handbook of Liquid Crystals—Volume I Chapter 3 (2024) p. 75
  3. Singh Sh Handbook of Liquid Crystals—Volume I Chapter 4 (2024) p. 107
  4. Bury P, Veveričík M et al The Journal of the Acoustical Society of America 153 (6) 3292 (2023)
  5. Malkin A Ya, Isayev A I Rheology (2022) p. 133
  6. Shvetsov S A, Zolot’ko A S et al J. Phys.: Conf. Ser. 2067 (1) 012016 (2021)
  7. Bury P, Veveričík M et al Nanomaterials 11 (10) 2643 (2021)
  8. Kurilov A D, Chekulaev I S et al J. Phys.: Conf. Ser. 2056 (1) 012029 (2021)
  9. Kucherov R N, Kurilov A D et al J. Phys.: Conf. Ser. 1560 (1) 012047 (2020)
  10. Dukhin A S, Goetz P J Characterization of Liquids, Dispersions, Emulsions, and Porous Materials Using Ultrasound (2017) p. 85
  11. Bennett T P, Proctor M B et al Journal Of Colloid And Interface Science 497 201 (2017)
  12. Malkin A Ya, Isayev A Rheology (2017) p. 129
  13. Gómez-González M, del Álamo Juan C Soft Matter 12 (26) 5758 (2016)
  14. Noroozi N, Grecov D Liquid Crystals 40 (7) 871 (2013)
  15. Odinaev S, Abdurasulov A Ukr. J. Phys. 58 (9) 827 (2013)
  16. Malkin A Ya, Isayev A I Rheology Concepts, Methods, and Applications (2012) p. 127
  17. Volkov V S Polym. Sci. Ser. A 54 (9) 744 (2012)
  18. Odinaev S, Akdodov D, Mirzoaminov Kh Journal Of Molecular Liquids 164 (1-2) 22 (2011)
  19. Dukhin A S, Goetz P J Studies In Interface Science Vol. Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using UltrasoundFundamentals of Acoustics in Homogeneous Liquids24 (2010) p. 91
  20. Fu Sh, Tsuji T, Chono Sh Molecular Physics 107 (3) 245 (2009)
  21. Fu Sh, Bai J J Of Applied Polymer Sci 113 (3) 1383 (2009)
  22. Liquid Crystals 1 (2009) p. 179
  23. Holmes C J, Cornford S L, Sambles J R Applied Physics Letters 95 (17) (2009)
  24. Fu Sh, Tsuji T, Chono Sh Journal Of Rheology 52 (2) 451 (2008)
  25. Chino M, Kitano K et al Liquid Crystals 35 (10) 1225 (2008)
  26. Golovanov A V, Gaidadin A N, Ryabchuk G V Crystallogr. Rep. 53 (4) 695 (2008)
  27. Golovanov A V, Ryabchuk G V Colloid J 70 (3) 268 (2008)
  28. Chen H-Yu, Lee W, Clark N A Applied Physics Letters 90 (3) (2007)
  29. Makarov D V, Zakhlevnykh A N Phys. Rev. E 74 (4) (2006)
  30. Brake Je M, Daschner M K, Abbott N L Langmuir 21 (6) 2218 (2005)
  31. Pestov S Landolt-Börnstein - Group VIII Advanced Materials And Technologies Vol. Subvolume A1 Description of properties5A Chapter 2 (2003) p. 11
  32. Studies In Interface Science Vol. Ultrasound for Characterizing Colloids - Particle Sizing, Zeta Potential, RheologyChapter 3. Fundamentals of acoustics in liquids15 (2002) p. 75

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions