Reviews of topical problems

Physical methods for measuring the viscosity coefficients of nematic liquid crystals

Central R&D ‘Cometa’, ul. Velozavodskaya 5, Moscow, 109280, Russian Federation

Methods for measuring the viscosity coefficients of the best known type of anisotropic fluid, nematic liquid crystals (NLCs), are reviewed. The hydrodynamic Leslie-Ericksen-Parodi theory is described in brief, which predicts five independent viscosity coefficients for a NLC. The feature that distinguishes NLCs from isotropic liquids is the rotational viscosity, due to energy dissipation caused by NLC reorientation. The shear flow method, methods based on ultrasonic wave propagation and absorption in an anisotropic medium, and the rotating magnetic field technique are described in detail, as well as methods that involve analyzing the Freedericksz transition dynamics (LC reorientation in an electric or magnetic field) and those using light scattering from the thermal fluctuations of the NLC director. In each case, the accuracy of the method is evaluated, its complexity assessed, and the amount of material needed for measurement estimated.

Fulltext is available at IOP
PACS: 61.30.−v, 83.70.Jr, 83.85.Jn (all)
DOI: 10.1070/PU2001v044n03ABEH000831
Citation: Belyaev V V "Physical methods for measuring the viscosity coefficients of nematic liquid crystals" Phys. Usp. 44 255–284 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Беляев В В «Физические методы измерения коэффициентов вязкости нематических жидких кристаллов» УФН 171 267–298 (2001); DOI: 10.3367/UFNr.0171.200103b.0267

References (158) Cited by (24) ↓ Similar articles (20)

  1. Bury P, Veveričík M et al Crystals 10 1023 (2020)
  2. Kucherov R N, Kurilov A D et al J. Phys.: Conf. Ser. 1560 012047 (2020)
  3. Bennett T P, Proctor M B et al Journal Of Colloid And Interface Science 497 201 (2017)
  4. Dukhin A S, Goetz P J Characterization of Liquids, Dispersions, Emulsions, and Porous Materials Using Ultrasound (2017) p. 85
  5. Malkin A Ya, Isayev A Rheology (2017) p. 129
  6. Gómez-González M, del Álamo Juan C Soft Matter 12 5758 (2016)
  7. Odinaev S, Abdurasulov A Ukr. J. Phys. 58 827 (2013)
  8. Noroozi N, Grecov D Liquid Crystals 40 871 (2013)
  9. Malkin A Ya, Isayev A I Rheology Concepts, Methods, and Applications (2012) p. 127
  10. Volkov V S Polym. Sci. Ser. A 54 744 (2012)
  11. Odinaev S, Akdodov D, Mirzoaminov Kh Journal Of Molecular Liquids 164 22 (2011)
  12. Dukhin A S, Goetz P J Studies In Interface Science Vol. Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies Using Ultrasound24 (2010) p. 91
  13. Holmes C J, Cornford S L, Sambles J R Appl. Phys. Lett. 95 171114 (2009)
  14. Liquid Crystals 1 (2009) p. 179
  15. Fu Sh, Bai J J. Appl. Polym. Sci. 113 1383 (2009)
  16. Fu Sh, Tsuji T, Chono Sh Molecular Physics 107 245 (2009)
  17. Fu Sh, Tsuji T, Chono Sh Journal Of Rheology 52 451 (2008)
  18. Chino M, Kitano K et al Liquid Crystals 35 1225 (2008)
  19. Golovanov A V, Gaidadin A N, Ryabchuk G V Crystallogr. Rep. 53 695 (2008)
  20. Golovanov A V, Ryabchuk G V Colloid J 70 268 (2008)
  21. Chen H-Yu, Lee W, Clark N A Appl. Phys. Lett. 90 033510 (2007)
  22. Makarov D V, Zakhlevnykh A N Phys. Rev. E 74 (4) (2006)
  23. Pestov S Landolt-Börnstein - Group VIII Advanced Materials And Technologies Vol. Subvolume A5A Chapter 2 (2003) p. 11
  24. Studies In Interface Science Vol. Ultrasound for Characterizing Colloids - Particle Sizing, Zeta Potential, Rheology15 (2002) p. 75

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions