Issues

 / 

2000

 / 

December

  

Reviews of topical problems


Thermodynamic fluctuations within the Gibbs and Einstein approaches

,
Peoples' Friendship University of Russia, ul. Miklukho-Maklaya, 6, Moscow, 117198, Russian Federation

A comparative analysis of the descriptions of fluctuations in statistical mechanics (the Gibbs approach) and in statistical thermodynamics (the Einstein approach) is given. On this basis solutions are obtained for the Gibbs and Einstein problems that arise in pressure fluctuation calculations for a spatially limited equilibrium (or slightly nonequilibrium) macroscopic system. A modern formulation of the Gibbs approach which allows one to calculate equilibrium pressure fluctuations without making any additional assumptions is presented; to this end the generalized Bogolyubov-Zubarev and Hellmann-Feynman theorems are proved for the classical and quantum descriptions of a macrosystem. A statistical version of the Einstein approach is developed which shows a fundamental difference in pressure fluctuation results obtained within the context of two approaches. Both the ’genetic’ relation between the Gibbs and Einstein approaches and the conceptual distinction between their physical grounds are demonstrated. To illustrate the results, which are valid for any thermodynamic system, an ideal nondegenerate gas of microparticles is considered, both classically and quantum mechanically. Based on the results obtained, the correspondence between the micro- and macroscopic descriptions is considered and the prospects of statistical thermodynamics are discussed.

Fulltext pdf (660 KB)
Fulltext is also available at DOI: 10.1070/PU2000v043n12ABEH000828
PACS: 05.20.Gg, 05.30.Ch, 05.40.−a, 05.70.Ce (all)
DOI: 10.1070/PU2000v043n12ABEH000828
URL: https://ufn.ru/en/articles/2000/12/a/
000167166600001
Citation: Rudoi Yu G, Sukhanov A D "Thermodynamic fluctuations within the Gibbs and Einstein approaches" Phys. Usp. 43 1169–1199 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Рудой Ю Г, Суханов А Д «Термодинамические флуктуации в подходах Гиббса и Эйнштейна» УФН 170 1265–1296 (2000); DOI: 10.3367/UFNr.0170.200012a.1265

References (55) Cited by (25) Similar articles (20) ↓

  1. M.F. Sarry “Theoretical calculation of equations of state: analytical resultsPhys. Usp. 42 991–1015 (1999)
  2. Yu.L. Klimontovich, A.S. Kovalev, P.S. Landa “Natural fluctuations in lasersSov. Phys. Usp. 15 95–113 (1972)
  3. Yu.L. Klimontovich “Problems in the statistical theory of open systems: Criteria for the relative degree of order in self-organization processesSov. Phys. Usp. 32 416–433 (1989)
  4. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layerPhys. Usp. 55 1008–1034 (2012)
  5. Yu.V. Gulyaev, A.S. Bugaev et alNanotransport controlled by means of the ratchet effectPhys. Usp. 63 311–326 (2020)
  6. S.V. Demishev “Spin-fluctuation transitionsPhys. Usp. 67 22–43 (2024)
  7. S.M. Stishov “Quantum effects in condensed matter at high pressurePhys. Usp. 44 285–290 (2001)
  8. Sh.M. Kogan “Low-frequency current noise with a 1/f spectrum in solidsSov. Phys. Usp. 28 170–195 (1985)
  9. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flowsPhys. Usp. 46 667–688 (2003)
  10. E.A. Vinogradov, I.A. Dorofeyev “Thermally stimulated electromagnetic fields of solidsPhys. Usp. 52 425–459 (2009)
  11. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transportPhys. Usp. 56 243–260 (2013)
  12. A.V. Bushman, V.E. Fortov “Model equations of stateSov. Phys. Usp. 26 465–496 (1983)
  13. D.I. Blokhintsev “Classical statistical physics and quantum mechanicsSov. Phys. Usp. 20 683–690 (1977)
  14. A.M. Glezer, R.V. Sundeev et alPhysics of severe plastic deformationPhys. Usp. 66 32–58 (2023)
  15. V.S. Vikhrenko “Theory of depolarized molecular light scatteringSov. Phys. Usp. 17 558–576 (1975)
  16. A.M. Dykhne, Yu.B. Rumer “Thermodynamics of a plane Ising-Onsager dipole latticeSov. Phys. Usp. 4 698–705 (1962)
  17. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physicsPhys. Usp. 36 (12) 1087–1128 (1993)
  18. A.I. Olemskoi “Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymersPhys. Usp. 44 479–513 (2001)
  19. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their usesPhys. Usp. 44 447–478 (2001)
  20. M.S. Marinov “Relativistic strings and dual models of the strong interactionsSov. Phys. Usp. 20 179–208 (1977)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions