Issues

 / 

2000

 / 

December

  

Reviews of topical problems


Thermodynamic fluctuations within the Gibbs and Einstein approaches

,
Peoples' Friendship University of Russia, ul. Miklukho-Maklaya, 6, Moscow, 117198, Russian Federation

A comparative analysis of the descriptions of fluctuations in statistical mechanics (the Gibbs approach) and in statistical thermodynamics (the Einstein approach) is given. On this basis solutions are obtained for the Gibbs and Einstein problems that arise in pressure fluctuation calculations for a spatially limited equilibrium (or slightly nonequilibrium) macroscopic system. A modern formulation of the Gibbs approach which allows one to calculate equilibrium pressure fluctuations without making any additional assumptions is presented; to this end the generalized Bogolyubov-Zubarev and Hellmann-Feynman theorems are proved for the classical and quantum descriptions of a macrosystem. A statistical version of the Einstein approach is developed which shows a fundamental difference in pressure fluctuation results obtained within the context of two approaches. Both the ’genetic’ relation between the Gibbs and Einstein approaches and the conceptual distinction between their physical grounds are demonstrated. To illustrate the results, which are valid for any thermodynamic system, an ideal nondegenerate gas of microparticles is considered, both classically and quantum mechanically. Based on the results obtained, the correspondence between the micro- and macroscopic descriptions is considered and the prospects of statistical thermodynamics are discussed.

Fulltext pdf (660 KB)
Fulltext is also available at DOI: 10.1070/PU2000v043n12ABEH000828
PACS: 05.20.Gg, 05.30.Ch, 05.40.−a, 05.70.Ce (all)
DOI: 10.1070/PU2000v043n12ABEH000828
URL: https://ufn.ru/en/articles/2000/12/a/
000167166600001
Citation: Rudoi Yu G, Sukhanov A D "Thermodynamic fluctuations within the Gibbs and Einstein approaches" Phys. Usp. 43 1169–1199 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Рудой Ю Г, Суханов А Д «Термодинамические флуктуации в подходах Гиббса и Эйнштейна» УФН 170 1265–1296 (2000); DOI: 10.3367/UFNr.0170.200012a.1265

References (55) Cited by (25) ↓ Similar articles (20)

  1. Piskunova N N Journal Of Crystal Growth 603 127013 (2023)
  2. Dzerjinsky R I, Sidorov S V, Anosov T E Lecture Notes In Networks And Systems Vol. Networks and Systems in CyberneticsThe Problem of Large Local Fluctuations Appearance723 Chapter 51 (2023) p. 573
  3. Ryazanov V V Eur. Phys. J. B 94 (12) (2021)
  4. Piskunova N N Journal Of Crystal Growth 575 126359 (2021)
  5. Rudoy Yu G, Rybakov Yu P Particles 2 150 (2019)
  6. Rudoi Yu G Theor Math Phys 194 114 (2018)
  7. Hickman J, Mishin Y Phys. Rev. B 94 (18) (2016)
  8. Waters Ja T, Kim H D Phys. Rev. E 93 (4) (2016)
  9. Grafov B M Russ J Electrochem 52 220 (2016)
  10. Mishin Y Annals Of Physics 363 48 (2015)
  11. Waters Ja T, Kim H D Phys. Rev. E 92 (1) (2015)
  12. Bystryi R G J. Phys.: Conf. Ser. 653 012154 (2015)
  13. Ruuge A Entropy 15 4889 (2013)
  14. Oksak A I, Oksak A I Teoreticheskaya Matematicheskaya Fizika 173 479 (2012) [Oksak A I Theor Math Phys 173 1743 (2012)]
  15. Argudo D, Purohit P K Acta Biomaterialia 8 2133 (2012)
  16. Rudoy Yu G, Rybakov Yu P, Keita I J Math Sci 172 870 (2011)
  17. Grafov B M Russ J Electrochem 47 369 (2011)
  18. Grafov B M Russ J Electrochem 46 239 (2010)
  19. Sukhanov A D, Rudoi Yu G Uspekhi Fizicheskikh Nauk 176 551 (2006)
  20. Timashev S F Russ J Electrochem 42 424 (2006)
  21. Grafov B M Russ J Electrochem 41 113 (2005)
  22. Kharlamov G V, Rudyak V Ya Physica A: Statistical Mechanics And Its Applications 340 257 (2004)
  23. Sukhanov A D, Sukhanov A D Teor. Mat. Fiz. 139 129 (2004)
  24. Sanyuk V I, Sukhanov A D Uspekhi Fizicheskikh Nauk 173 965 (2003)
  25. Mikheev V M Phys. Solid State 43 1860 (2001)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions