Issues

 / 

1998

 / 

June

  

Special issue


Superfluidity, superconductivity and magnetism in mesoscopics


Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation

The nature of superfluid, superconducting, and magnetic ordering is elucidated for mesoscopic systems in which the single-particle level spacing is much larger than both the temperature and the critical temperature of ordering. Ordering is defined as a spontaneous violation of symmetry, the gauge invariance and time reversal being by definition symmetries violated in superfluidity (superconductivity) and magnetism contexts, respectively. Superfluidity and superconductivity are realized in thermodynamic equilibrium states with a non-integral average number of particles and are accompanied by the spontaneous violation of time homogeneity. In Fermi systems two types of superfluidity and superconductivity are possible which are characterized by the presence of pair or single-particle ’condensates’. The latter is remarkable in that spontaneous violation of fundamental symmetries such as spatial 2π rotation and double time reversal takes place. Possible experiments on metallic nanoparticles and ultracold atomic gases in magnetic traps are discussed.

Fulltext pdf (192 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n06ABEH000408
PACS: 11.30.−j, 73.23.−b, 74.25.−q, 75.45.+j (all)
DOI: 10.1070/PU1998v041n06ABEH000408
URL: https://ufn.ru/en/articles/1998/6/f/
000075347000006
Citation: Andreev A F "Superfluidity, superconductivity and magnetism in mesoscopics" Phys. Usp. 41 581–588 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Андреев А Ф «Сверхтекучесть, сверхпроводимость и магнетизм в мезоскопике» УФН 168 655–664 (1998); DOI: 10.3367/UFNr.0168.199806f.0655

References (20) Cited by (20) ↓ Similar articles (4)

  1. Khannanov B Kh, Golovenchits E I, Sanina V A Jetp Lett. 115 231 (2022)
  2. Khannanov B Kh, Golovenchits E I, Sanina V A Phys. Solid State 62 660 (2020)
  3. Golovenchits E I, Khannanov B Kh, Sanina V A Jetp Lett. 111 709 (2020)
  4. Khannanov B Kh, Golovenchits E I, Sanina V A Phys. Solid State 62 308 (2020)
  5. Tsarev D, Alodjants A et al New J. Phys. 22 113016 (2020)
  6. Vorob’ev S I, Getalov A L et al Jetp Lett. 110 133 (2019)
  7. Sanina V A, Khannanov B Kh et al Phys. Solid State 61 370 (2019)
  8. Sanina V A, Khannanov B Kh et al Phys. Solid State 60 537 (2018)
  9. Sanina V A, Khannanov B Kh et al Phys. Solid State 60 2532 (2018)
  10. Sanina V A, Khannanov B Kh, Golovenchits E I Phys. Solid State 59 1952 (2017)
  11. Agafonov A I Int. J. Mod. Phys. B 28 1450233 (2014)
  12. Kirichenko A Ya, Belevtsev B I et al Tech. Phys. 52 616 (2007)
  13. Kirpichenkov V Ya J. Exp. Theor. Phys. 105 259 (2007)
  14. Veremeĭchik T F Crystallogr. Rep. 51 543 (2006)
  15. Leksin A Yu, Alodjants A P, Arakelian S M Opt. Spectrosc. 94 768 (2003)
  16. Andreev A F Jetp Lett. 74 512 (2001)
  17. Volovik G E Jetp Lett. 73 375 (2001)
  18. Kamilov I K, Murtazaev A K, Aliev Kh K Uspekhi Fizicheskikh Nauk 169 773 (1999)
  19. Belousov A I, Lozovik Yu E Jetp Lett. 68 858 (1998)
  20. Andreev A F Jetp Lett. 68 673 (1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions