Issues

 / 

1998

 / 

April

  

Methodological notes


Translation invariance and the problem of the bipolaron


Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Prof. Vitkevich str. 1, Pushchino, Moscow Region, 142290, Russian Federation

Differences between translation-invariant and broken-symmetry bipolaron theories are analyzed in detail. It is shown that the Bogolyubov-Tyablikov canonical transformation allows collective coordinates to be introduced in a regular way for two particles in a quantum field and that for the case of the bipolaron the resulting electron-electron interaction in a phonon field depends on the electron coordinate difference alone. Predictions using a revised solution of the nonlinear differential equations for a bipolaron are given. It is shown that solving bipolaron equations numerically reduces the total bipolaron energies compared to known variational results.

Fulltext pdf (128 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n04ABEH000385
PACS: 71.38.+i
DOI: 10.1070/PU1998v041n04ABEH000385
URL: https://ufn.ru/en/articles/1998/4/d/
000074653300004
Citation: Lakhno V D "Translation invariance and the problem of the bipolaron" Phys. Usp. 41 403–406 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лахно В Д «Трансляционная инвариантность и проблема биполярона» УФН 168 465–469 (1998); DOI: 10.3367/UFNr.0168.199804d.0465

References (16) Cited by (4) Similar articles (16) ↓

  1. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  2. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  3. P.S. Kondratenko, L.V. Matveev “Asymptotic theory of classical impurity transport in an inhomogeneous and non-stationary media. Hamilton’s formalismPhys. Usp., accepted
  4. A.V. Kukushkin “A technique for solving the wave equation and prospects for physical applications arising therefromPhys. Usp. 36 (2) 81–93 (1993)
  5. S.I. Chermyanin “Predictions of the general theory of relativity are free from ambiguitySov. Phys. Usp. 33 (5) 385–387 (1990)
  6. A.A. Shatskii, I.D. Novikov, N.S. Kardashev “A dynamic model of the wormhole and the Multiverse modelPhys. Usp. 51 457–464 (2008)
  7. V.P. Kazantsev “An example illustrating the potentiality and peculiarities of a variational approach to electrostatic problemsPhys. Usp. 45 325–330 (2002)
  8. V.A. Saranin “Electric field strength of charged conducting balls and the breakdown of the air gap between themPhys. Usp. 45 1287–1292 (2002)
  9. B.M. Bolotovskii, A.V. Serov “Special features of motion of particles in an electromagnetic wavePhys. Usp. 46 645–655 (2003)
  10. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  11. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)
  12. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structuresPhys. Usp. 54 281–290 (2011)
  13. V.S. Olkhovsky “On time as a quantum observable canonically conjugate to energyPhys. Usp. 54 829–835 (2011)
  14. E.D. Trifonov “On quantum statistics for ensembles with a finite number of particlesPhys. Usp. 54 723–727 (2011)
  15. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  16. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?Phys. Usp. 57 714–720 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions