Issues

 / 

1998

 / 

March

  

Reviews of topical problems


Theory of stochastic systems with singular multiplicative noise


Sumy State University, ul. Rimskogo-Korsakova 2, Sumy, 244007, Ukraine

Noisy, interacting, stochastic systems are analyzed for the case in which their noise intensity varies with the hydrodynamic mode amplitude x according to the power law x2a, x \in [0, 1]. It is shown that the phase space domain of definition of the stochastic variable x forms a self-affine set of fractal dimensionality D = 2(1-a). Using the gauge procedure, a system of calculus is chosen which is not reducible either to the Ito case or the Stratonovich case. By generalizing the microscopic picture of phase transitions it is demonstrated that the system may reduce its symmetry (for 1 < D \leqslant 2) or lose ergodicity (for 0 < D \leqslant 1). Over the entire interval D \in [0, 2], a noise-induced transition is shown to be possible.

Fulltext pdf (523 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n03ABEH000377
PACS: 05.40.+j, 05.70.Fh, 64.60.−i, 82.20.Fd (all)
DOI: 10.1070/PU1998v041n03ABEH000377
URL: https://ufn.ru/en/articles/1998/3/c/
000073306100003
Citation: Olemskoi A I "Theory of stochastic systems with singular multiplicative noise" Phys. Usp. 41 269–301 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Олемской А И «Теория стохастических систем с сингулярным мультипликативным шумом» УФН 168 287–321 (1998); DOI: 10.3367/UFNr.0168.199803c.0287

References (60) Cited by (42) Similar articles (20) ↓

  1. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systemsPhys. Usp. 38 1061–1097 (1995)
  2. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physicsPhys. Usp. 36 (12) 1087–1128 (1993)
  3. Sh.M. Kogan “Low-frequency current noise with a 1/f spectrum in solidsSov. Phys. Usp. 28 170–195 (1985)
  4. Yu.L. Klimontovich “Nonlinear Brownian motionPhys. Usp. 37 737–766 (1994)
  5. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layerPhys. Usp. 55 1008–1034 (2012)
  6. L.I. Klushin, A.M. Skvortsov, A.A. Gorbunov “An exactly solvable model for first- and second-order transitionsPhys. Usp. 41 639–649 (1998)
  7. A.M. Perelomov “Solutions of the instanton type in chiral modelsSov. Phys. Usp. 24 645–661 (1981)
  8. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformationSov. Phys. Usp. 35 (6) 455–480 (1992)
  9. L.E. Gendenshtein, I.V. Krive “Supersymmetry in quantum mechanicsSov. Phys. Usp. 28 645–666 (1985)
  10. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced orderPhys. Usp. 42 7–36 (1999)
  11. I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev “Monte Carlo studies of phase transitions and critical phenomenaPhys. Usp. 42 689–709 (1999)
  12. G.A. Martynov “The problem of phase transitions in statistical mechanicsPhys. Usp. 42 517–543 (1999)
  13. S.M. Stishov “Quantum phase transitionsPhys. Usp. 47 789–795 (2004)
  14. V.P. Skripov, A.V. Skripov “Spinodal decomposition (phase transitions via unstable states)Sov. Phys. Usp. 22 389–410 (1979)
  15. V.S. Dotsenko “Critical phenomena and quenched disorderPhys. Usp. 38 457–496 (1995)
  16. L.I. Manevich, A.V. Savin et alSolitons in nondegenerate bistable systemsPhys. Usp. 37 859–879 (1994)
  17. S.V. Demishev “Spin-fluctuation transitionsPhys. Usp. 67 22–43 (2024)
  18. G.A. Martynov “Statistical theory of electrolyte solutions of intermediate concentrationsSov. Phys. Usp. 10 171–187 (1967)
  19. A.Yu. Grosberg “Disordered polymersPhys. Usp. 40 125–158 (1997)
  20. B.M. Barbashov, V.V. Nesterenko “Superstrings: a new approach to a unified theory of fundamental interactionsSov. Phys. Usp. 29 1077–1096 (1986)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions