Reviews of topical problems

Theory of stochastic systems with singular multiplicative noise

Sumy State University, ul. Rimskogo-Korsakova 2, Sumy, 244007, Ukraine

Noisy, interacting, stochastic systems are analyzed for the case in which their noise intensity varies with the hydrodynamic mode amplitude x according to the power law x2a, x \in [0, 1]. It is shown that the phase space domain of definition of the stochastic variable x forms a self-affine set of fractal dimensionality D = 2(1-a). Using the gauge procedure, a system of calculus is chosen which is not reducible either to the Ito case or the Stratonovich case. By generalizing the microscopic picture of phase transitions it is demonstrated that the system may reduce its symmetry (for 1 < D \leqslant 2) or lose ergodicity (for 0 < D \leqslant 1). Over the entire interval D \in [0, 2], a noise-induced transition is shown to be possible.

PACS: 05.40.+j, 05.70.Fh, 64.60.−i, 82.20.Fd (all)
DOI: 10.1070/PU1998v041n03ABEH000377
Citation: Olemskoi A I "Theory of stochastic systems with singular multiplicative noise" Phys. Usp. 41 269–301 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Олемской А И «Теория стохастических систем с сингулярным мультипликативным шумом» УФН 168 287–321 (1998); DOI: 10.3367/UFNr.0168.199803c.0287

References (60) Cited by (42) Similar articles (20) ↓

  1. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systems38 1061–1097 (1995)
  2. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physics36 (12) 1087–1128 (1993)
  3. Sh.M. Kogan “Low-frequency current noise with a 1/f spectrum in solids28 170–195 (1985)
  4. Yu.L. Klimontovich “Nonlinear Brownian motion37 737–766 (1994)
  5. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer55 1008–1034 (2012)
  6. L.I. Klushin, A.M. Skvortsov, A.A. Gorbunov “An exactly solvable model for first- and second-order transitions41 639–649 (1998)
  7. A.I. Olemskoi, I.A. Sklyar “Evolution of the defect structure of a solid during plastic deformation35 (6) 455–480 (1992)
  8. L.E. Gendenshtein, I.V. Krive “Supersymmetry in quantum mechanics28 645–666 (1985)
  9. A.M. Perelomov “Solutions of the instanton type in chiral models24 645–661 (1981)
  10. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced order42 7–36 (1999)
  11. I.K. Kamilov, A.K. Murtazaev, Kh.K. Aliev “Monte Carlo studies of phase transitions and critical phenomena42 689–709 (1999)
  12. G.A. Martynov “The problem of phase transitions in statistical mechanics42 517–543 (1999)
  13. S.M. Stishov “Quantum phase transitions47 789–795 (2004)
  14. V.S. Dotsenko “Critical phenomena and quenched disorder38 457–496 (1995)
  15. L.I. Manevich, A.V. Savin et alSolitons in nondegenerate bistable systems37 859–879 (1994)
  16. G.A. Martynov “Statistical theory of electrolyte solutions of intermediate concentrations10 171–187 (1967)
  17. A.Yu. Grosberg “Disordered polymers40 125–158 (1997)
  18. B.M. Barbashov, V.V. Nesterenko “Superstrings: a new approach to a unified theory of fundamental interactions29 1077–1096 (1986)
  19. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  20. A.I. Olemskoi “Self-consistent theory of localization within site and wave approaches39 651–668 (1996)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions