Issues

 / 

1997

 / 

March

  

Methodological notes


Bell’s theorem for trichotomic observables


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Bell’s paradoxes, due to the fundamental properties of light and the nature of the photon, are discussed within a single framework with a view to checking the hypothesis that a stationary, non-negative, joint probability distribution function exists. This hypothesis, related to the local theory of hidden parameters as a possible interpretation of quantum theory, enables experimentally verifiable Bell’s inequalities to be formulated. The dependence of these inequalities on the number of observers V is considered. Quantum theory predicts the breakdown of Bell’s inequalities in optical experiments. It is shown that as V increases, the requirements on the quantum effectiveness of the detector, η, are reduced from η>2/3 at V=2 to η>1/2 for V \rightarrow \infty . Examples of joint probability distribution functions are given for illustrative purposes, and a way to resolve the Greenberg-Horne-Zeilinger (GHZ) paradox is suggested.

Fulltext pdf (272 KB)
Fulltext is also available at DOI: 10.1070/PU1997v040n03ABEH000225
PACS: 03.65.Bz
DOI: 10.1070/PU1997v040n03ABEH000225
URL: https://ufn.ru/en/articles/1997/3/f/
A1997WU37100007
Citation: Belinskii A V "Bell's theorem for trichotomic observables" Phys. Usp. 40 305–316 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Белинский А В «Теорема Белла для трихотомных наблюдаемых» УФН 167 323–335 (1997); DOI: 10.3367/UFNr.0167.199703h.0323

References (40) Cited by (13) Similar articles (20) ↓

  1. A.V. Belinskii “Bell’s theorem without the hypothesis of localityPhys. Usp. 37 219–222 (1994)
  2. B.B. Kadomtsev “Irreversibility in quantum mechanicsPhys. Usp. 46 1183–1201 (2003)
  3. A.V. Belinskii “Bell’s paradoxes without the introduction of hidden variablesPhys. Usp. 37 413–419 (1994)
  4. A.V. Belinskii, A.S. Chirkin “Bernstein’s paradox of entangled quantum statesPhys. Usp. 56 1126–1131 (2013)
  5. N.V. Evdokimov, D.N. Klyshko et alBell’s inequalities and EPR-Bohm correlations: working classical radiofrequency modelPhys. Usp. 39 83–98 (1996)
  6. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  7. M.B. Mensky “Measurability of quantum fields and the energy—time uncertainty relationPhys. Usp. 54 519–528 (2011)
  8. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variablesSov. Phys. Usp. 32 555–563 (1989)
  9. D.N. Klyshko “A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principleSov. Phys. Usp. 31 74–85 (1988)
  10. A.V. Belinsky “Wigner's friend paradox: does objective reality not exist?Phys. Usp. 63 1256–1263 (2020)
  11. L.A. Rivlin “Photons in a waveguide (some thought experiments)Phys. Usp. 40 291–303 (1997)
  12. V.V. Mityugov “Thermodynamics of simple quantum systemsPhys. Usp. 43 631–637 (2000)
  13. G. Oppen “Objects and environmentPhys. Usp. 39 617–622 (1996)
  14. Yu.L. Klimontovich “Entropy and information of open systemsPhys. Usp. 42 375–384 (1999)
  15. A.V. Belinsky “On David Bohm's 'pilot-wave' conceptPhys. Usp. 62 1268–1278 (2019)
  16. I.E. Mazets “Kinetic equation including wave function collapsesPhys. Usp. 41 505–507 (1998)
  17. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  18. Yu.I. Vorontsov “The uncertainty relation between energy and time of measurementSov. Phys. Usp. 24 150–158 (1981)
  19. A.V. Belinsky, A.A. Klevtsov “Nonlocal classical "realism" and quantum superposition as the nonexistence of definite pre-measurement values of physical quantitiesPhys. Usp. 61 313–319 (2018)
  20. A.V. Belinskii “Regular and quasiregular spectra of disordered layer structuresPhys. Usp. 38 653–664 (1995)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions