Methodological notes

Bell’s theorem for trichotomic observables

Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Bell’s paradoxes, due to the fundamental properties of light and the nature of the photon, are discussed within a single framework with a view to checking the hypothesis that a stationary, non-negative, joint probability distribution function exists. This hypothesis, related to the local theory of hidden parameters as a possible interpretation of quantum theory, enables experimentally verifiable Bell’s inequalities to be formulated. The dependence of these inequalities on the number of observers V is considered. Quantum theory predicts the breakdown of Bell’s inequalities in optical experiments. It is shown that as V increases, the requirements on the quantum effectiveness of the detector, η, are reduced from η>2/3 at V=2 to η>1/2 for V \rightarrow \infty . Examples of joint probability distribution functions are given for illustrative purposes, and a way to resolve the Greenberg-Horne-Zeilinger (GHZ) paradox is suggested.

PACS: 03.65.Bz
DOI: 10.1070/PU1997v040n03ABEH000225
Citation: Belinskii A V "Bell's theorem for trichotomic observables" Phys. Usp. 40 305–316 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS) MedlineRefWorks
PT Journal Article
TI Bell's theorem for trichotomic observables
AU Belinskii A V
FAU Belinskii AV
DP 10 Mar, 1997
TA Phys. Usp.
VI 40
IP 3
PG 305-316
RX 10.1070/PU1997v040n03ABEH000225
SO Phys. Usp. 1997 Mar 10;40(3):305-316

Оригинал: Белинский А В «Теорема Белла для трихотомных наблюдаемых» УФН 167 323–335 (1997); DOI: 10.3367/UFNr.0167.199703h.0323

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions