Issues

 / 

1996

 / 

February

  

Reviews of topical problems


Waves in weakly anisotropic 3D inhomogeneous media: quasi-isotropic approximation of geometrical optics

 a,  b,  c
a Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation
b Kamyshin Technological Institute, ul. Lenina 6a, Kamyshin, Volgograd Region, 403850, Russian Federation
c Geophysical Center, Russian Academy of Sciences, ul. Molodezhnaya 3, Moscow, 117296, Russian Federation

The quasi-isotropic approximation (QIA) of geometrical optics is outlined. The main idea of the method is that electromagnetic waves in weakly anisotropic media preserve their transverse structure as they do in isotropic media. Advantages of the QIA are illustrated by considering electromagnetic wave propagation in plasma, a number of optical problems (liquid crystals, hiral media, single mode optical fibres), acoustical problems of weakly anisotropic elastic media, and quantum mechanical polarisation effects of the Stern-Gerlach type. New modifications of the QIA are presented, namely the method of split rays and the synthetic approach, the latter being applicable even for strongly anisotropic media.

Fulltext pdf (783 KB)
Fulltext is also available at DOI: 10.1070/PU1996v039n02ABEH000131
PACS: 42.15.−i, 42.25.Bs, 42.68.Ay, 92.60.Ta (all)
DOI: 10.1070/PU1996v039n02ABEH000131
URL: https://ufn.ru/en/articles/1996/2/b/
A1996UB80800002
Citation: Kravtsov Yu A, Naida O N, Fuki A A "Waves in weakly anisotropic 3D inhomogeneous media: quasi-isotropic approximation of geometrical optics" Phys. Usp. 39 129–154 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кравцов Ю А, Найда О Н, Фуки А А «Волны в слабоанизотропных трехмернонеоднородных средах: квазиизотропное приближение геометрической оптики» УФН 166 141–167 (1996); DOI: 10.3367/UFNr.0166.199602b.0141

References (120) Cited by (48) ↓ Similar articles (20)

  1. Araújo F R V, da Costa D R et al Phys. Rev. B 110 (8) (2024)
  2. Prikhodko L I, Shirokov I et al 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, (2023) p. 202
  3. Tereshchenko M Phys. Rev. E 107 (5) (2023)
  4. Rall P L, Förster D et al Opt. Express 30 (21) 38643 (2022)
  5. Shoom A A Phys. Rev. D 104 (8) (2021)
  6. Lopez N A, Dodin I Y J. Opt. 23 (2) 025601 (2021)
  7. Frolov V P Phys. Rev. D 102 (8) (2020)
  8. Tereshchenko M A Bull. Lebedev Phys. Inst. 47 (12) 399 (2020)
  9. Rall P L, Pflaum Ch J. Opt. Soc. Am. B 37 (7) 1933 (2020)
  10. Tereshchenko M A Plasma Phys. Rep. 46 (7) 740 (2020)
  11. Puro A E, Karov D D Opt. Spectrosc. 124 (5) 735 (2018)
  12. Dodin I Y, Ruiz D E, Kubo S Physics of Plasmas 24 (12) (2017)
  13. Puro A E Opt. Spectrosc. 122 (2) 322 (2017)
  14. Berngardt O I, Kutelev K A, Potekhin A P Radio Sci. 51 (10) 1703 (2016)
  15. Afanasyev A N, Uralov A M Sol Phys 291 (11) 3185 (2016)
  16. Puro A E, Karov D D Opt. Spectrosc. 119 (5) 887 (2015)
  17. Bieg B, Chrzanowski J et al Fusion Engineering And Design 96-97 756 (2015)
  18. Bieg B, Chrzanowski Ja et al Physics Procedia 62 107 (2015)
  19. Settimi A, Ippolito A et al International Journal Of Geophysics 2014 1 (2014)
  20. Puro A E Opt. Spectrosc. 114 (3) 440 (2013)
  21. Klimeš Luděk Stud Geophys Geod 57 (2) 253 (2013)
  22. Frolov V P, Shoom A A Phys. Rev. D 86 (2) (2012)
  23. KRAVTSOV YURY A, CHRZANOWSKI JANUSZ, BIEG BOHDAN J. Plasma Phys. 78 (1) 87 (2012)
  24. Kravtsov Yu A, Bieg B PIER Letters 33 13 (2012)
  25. Kravtsov Yu A, Chrzanowski J Eur. Phys. J. D 63 (1) 129 (2011)
  26. Kravtsov Yu A, Chrzanowski J, Mazon D Fusion Engineering And Design 86 (6-8) 1163 (2011)
  27. Frolov V P, Shoom A A Phys. Rev. D 84 (4) (2011)
  28. Botet R, Kuratsuji H Phys. Rev. E 83 (3) (2011)
  29. Kravtsov Yu A, Chrzanowski J, Mazon D Eur. Phys. J. D 63 (1) 135 (2011)
  30. KRAVTSOV YURY A, BIEG BOHDAN J. Plasma Phys. 76 (5) 795 (2010)
  31. Kravtsov Yu A, Ning Ya Zh 2010 URSI International Symposium on Electromagnetic Theory, (2010) p. 974
  32. Khorasani S, Rashidian B Optics Communications 283 (7) 1222 (2010)
  33. Kravtsov Yu A, Bieg B Plasma Phys. Control. Fusion 52 (2) 022001 (2010)
  34. Kravtsov Yu A, Berczynski P, Bieg B Physics Letters A 373 (33) 2979 (2009)
  35. Bliokh K Y J. Opt. A: Pure Appl. Opt. 11 (9) 094009 (2009)
  36. Czyz Z H, Bieg B, Kravtsov Yu A Physics Letters A 368 (1-2) 101 (2007)
  37. Bliokh K Yu, Frolov D Yu, Kravtsov Yu A Phys. Rev. A 75 (5) (2007)
  38. Puro A É, Karov D D Opt. Spectrosc. 103 (4) 678 (2007)
  39. Kravtsov Yu A, Bieg B, Bliokh K Yu J. Opt. Soc. Am. A 24 (10) 3388 (2007)
  40. Jiménez L, Mendoza C I, Reyes J A Phys. Rev. E 72 (5) (2005)
  41. Segre S E, Zanza V ApJ 554 (1) 408 (2001)
  42. Kravtsov Yu A, Naida O N Advances In Space Research 27 (6-7) 1233 (2001)
  43. Puro A É Opt. Spectrosc. 90 (4) 592 (2001)
  44. Reyes J A J. Phys. A: Math. Gen. 32 (18) 3409 (1999)
  45. Kravtsov Yu A, Orlov Yu I Springer Series On Wave Phenomena Vol. Caustics, Catastrophes and Wave FieldsRays and Caustics15 Chapter 2 (1999) p. 8
  46. Bellotti U, Bornatici M Plasma Phys. Control. Fusion 40 (10) 1707 (1998)
  47. Psˇencˇìk I Geophys. J. Int. 135 (1) 279 (1998)
  48. Bellotti U, Bornatici M, Engelmann F Riv. Nuovo Cim. 20 (5) 1 (1997)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions