Methodological notes

Bell’s inequalities and EPR-Bohm correlations: working classical radiofrequency model

 a,  b,  b,  b
a New Information Systems and Technologies, Ltd., ul. Oktyabrskaya 7/10, Moscow, 127018, Russian Federation
b Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

A description is given of an electron model which makes it possible to simulate pair correlation of random dichotomous signals of the Einstein-Podolsky-Rosen (EPR) type in the Bohm variant. This model can be used to demonstrate that Bell’s inequality is satisfied in classical physics. Some features of parametric rf oscillators are used in the model. An analysis of the operation of the model helps one to understand the difference between quantum and classical correlations in EPR experiments. A specific mechanism is suggested for ’nonlocal’ control of EPR-type correlations between distant observers, which applies to classical and quantum models. A controlled correlation between two random telegraphic signals is ensured by transmission, to two observers, of a sequence of pulses with the same random phase. An elementary derivation of Bell’s inequality is given and an analysis is made of the logic of the use of the popular term ’quantum nonlocality’ employed usually in the description of the quantum variants of the investigated experiment.

Fulltext pdf (661 KB)
Fulltext is also available at DOI: 10.1070/PU1996v039n01ABEH000129
PACS: 03.65.Bz, 03.40.-t
DOI: 10.1070/PU1996v039n01ABEH000129
Citation: Evdokimov N V, Klyshko D N, Komolov V P, Yarochkin V A "Bell's inequalities and EPR-Bohm correlations: working classical radiofrequency model" Phys. Usp. 39 83–98 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Евдокимов Н В, Клышко Д Н, Комолов В П, Ярочкин В А «Неравенства Белла и корреляции ЭПР-Бома: действующая классическая радиочастотная модель» УФН 166 91–107 (1996); DOI: 10.3367/UFNr.0166.199601f.0091

References (27) Cited by (21) Similar articles (17) ↓

  1. A.V. Belinskii “Bell’s theorem for trichotomic observables40 305–316 (1997)
  2. A.V. Belinskii “Bell’s paradoxes without the introduction of hidden variables37 413–419 (1994)
  3. A.V. Belinskii “Bell’s theorem without the hypothesis of locality37 219–222 (1994)
  4. N.V. Evdokimov, V.P. Komolov, P.V. Komolov “Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applications44 735–754 (2001)
  5. V.V. Mityugov “Thermodynamics of simple quantum systems43 631–637 (2000)
  6. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  7. D.N. Klyshko “A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle31 74–85 (1988)
  8. G. Oppen “Objects and environment39 617–622 (1996)
  9. L.A. Rivlin “Photons in a waveguide (some thought experiments)40 291–303 (1997)
  10. I.E. Mazets “Kinetic equation including wave function collapses41 505–507 (1998)
  11. Yu.L. Klimontovich “Entropy and information of open systems42 375–384 (1999)
  12. Yu.I. Vorontsov “The uncertainty relation between energy and time of measurement24 150–158 (1981)
  13. A.A. Grib “On the problem of the interpretation of quantum physics56 1230–1244 (2013)
  14. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variables32 555–563 (1989)
  15. A.V. Belinsky “Wigner's friend paradox: does objective reality not exist?63 1256–1263 (2020)
  16. O.G. Bakunin “Correlation and percolation properties of turbulent diffusion46 733–744 (2003)
  17. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theorem30 134–152 (1987)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions