Issues

 / 

1996

 / 

January

  

Topical problems


The phenomenological theory of world population growth


Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation

Of all global problems world population growth is the most significant. Demographic data describe this process in a concise and quantitative way in its past and present. Analysing this development it is possible by applying the concepts of systems analysis and synergetics, to work out a mathematical model for a phenomenological description of the global demographic process and to project its trends into the future. Assuming self-similarity as the dynamic principle of development, growth can be described practically over the whole of human history, assuming the growth rate to be proportional to the square of the number of people. The large parameter of the theory and the effective size of a coherent population group is of the order of 105 and the microscopic parameter of the phenomenology is the human lifespan. The demographic transition — a transition to a stabilised world population of some 14 billion in a foreseeable future — is a systemic singularity and is determined by the inherent pattern of growth of an open system, rather than by the lack of resources. The development of a quantitative nonlinear theory of the world population is of interest for interdisciplinary research in anthropology and demography, history and sociology, for population genetics and epidemiology, for studies in evolution of humankind and the origin of man. The model also provides insight into the stability of growth and the present predicament of humankind, and provides a setting for discussing the main global problems.

Fulltext is available at IOP
PACS: 01.75.+m
DOI: 10.1070/PU1996v039n01ABEH000127
URL: https://ufn.ru/en/articles/1996/1/c/
Citation: Kapitsa S P "The phenomenological theory of world population growth" Phys. Usp. 39 57–71 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Капица С П «Феноменологическая теория роста населения Земли» УФН 166 63–80 (1996); DOI: 10.3367/UFNr.0166.199601c.0063

References (51) Cited by (51) ↓ Similar articles (4)

  1. Kareva I, Karev G Modeling Evolution of Heterogenous Populations (2020) p. 25
  2. Panov A The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 20 (2020) p. 439
  3. LePoire D J, Korotayev A V The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 27 (2020) p. 599
  4. Modeling Evolution of Heterogenous Populations (2020) p. 327
  5. Grinin L, Grinin A, Korotayev A Technological Forecasting And Social Change 155 119955 (2020)
  6. Sibani P, Rasmussen S Physica A: Statistical Mechanics And Its Applications 558 124985 (2020)
  7. Grinin L, Grinin A, Korotayev A V The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 14 (2020) p. 287
  8. LePoire D J, Devezas T The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 11 (2020) p. 213
  9. Tsirel S The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 6 (2020) p. 119
  10. Fomin A The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 5 (2020) p. 105
  11. Zgurovsky M Z, Zaychenko Yu P Studies In Big Data Vol. Big Data: Conceptual Analysis and Applications58 Chapter 4 (2020) p. 141
  12. Korotayev A V The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 2 (2020) p. 19
  13. Korotayev A V The 21st Century Singularity and Global Futures World-Systems Evolution And Global Futures Chapter 26 (2020) p. 571
  14. Mitikhin V G, Yastrebov V S, Mitikhina I A Neurosci Behav Physi 49 233 (2019)
  15. Pokrovskii V N Econodynamics New Economic Windows Chapter 12 (2018) p. 237
  16. Kareva I, Karev G Bull Math Biol 80 151 (2018)
  17. Rogalchuk V, Arustamov S et al Dynamic Knowledge Representation in Scientific Domains Advances In Web Technologies And Engineering chapter 13 (2018) p. 286
  18. Cardullo M W, Mannie L M JBFE 70 (2017)
  19. Mitikhin V G, Yastrebov V S, Mitikhina I A Z. Nevrol. Psikhiatr. Im. S.S. Korsakova 117 5 (2017)
  20. Karev G P, Kareva I Bull Math Biol 78 834 (2016)
  21. Krushel E G, Stepanchenko I V et al Communications In Computer And Information Science Vol. Knowledge-Based Software Engineering466 Chapter 38 (2014) p. 446
  22. Aral M M Water Qual Expo Health 6 53 (2014)
  23. Karev G P, Kareva I G, Morozov A Math. Model. Nat. Phenom. 9 68 (2014)
  24. Yukalov V I, Yukalova E P, Sornette D Int. J. Bifurcation Chaos 24 1450021 (2014)
  25. Aral M M Front. Environ. Sci. 2 (2014)
  26. Taagepera R Technological Forecasting And Social Change 82 34 (2014)
  27. Rodkin M V, Pisarenko V F Selected Papers From Volume 31 ofVychislitel’naya Seysmologiya Computational Seismology And Geodynamics (2013) p. 85
  28. Yukalov V I, Yukalova E P et al PLoS ONE 8 e83225 (2013)
  29. Peura P Renewable And Sustainable Energy Reviews 19 309 (2013)
  30. Yukalov V I, Yukalova E P, Sornette D SSRN Journal (2012)
  31. Yukalov V I, Yukalova E P, Sornette D Eur. Phys. J. Spec. Top. 205 313 (2012)
  32. Miranda L C M, Lima C A S Technological Forecasting And Social Change 78 1445 (2011)
  33. Dolgonosov B M Ecological Modelling 221 1702 (2010)
  34. Kapitza S P Uspekhi Fizicheskikh Nauk 180 1337 (2010)
  35. Zgurovsky M Z Cybern Syst Anal 46 167 (2010)
  36. Cai J C, Mei D C Eur. Phys. J. B 72 607 (2009)
  37. Kurkina E S, Nikol’skii I M Comput Math Model 18 217 (2007)
  38. Nikol’skii I M MoscowUniv.Comput.Math.Cybern. 31 154 (2007)
  39. Kurkina E S, Nikol’skii I M Comput Math Model 17 320 (2006)
  40. Dolgonosov B M, Naidenov V I Ecological Modelling 198 375 (2006)
  41. Lemarchand G A The Future of Life and the Future of our Civilization Chapter 51 (2006) p. 457
  42. Panov A D Advances In Space Research 36 220 (2005)
  43. Kurkina E S Comput Math Model 16 121 (2005)
  44. Kurkina E S Comput Math Model 16 257 (2005)
  45. Lemarchand G A Symp. - Int. Astron. Union 213 460 (2004)
  46. SORNETTE D, IDE K Int. J. Mod. Phys. C 14 267 (2003)
  47. Ide K, Sornette D Physica A: Statistical Mechanics And Its Applications 307 63 (2002)
  48. Johansen A, Sornette D Physica A: Statistical Mechanics And Its Applications 294 465 (2001)
  49. Pimentel D, Edwards C A Implementing Ecological Integrity Chapter 26 (2000) p. 377
  50. Knyazeva H World Futures 54 163 (1999)
  51. Morrison P International Astronomical Union Colloquium 161 571 (1997)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions