Reviews of topical problems

Nonlinear Brownian motion

Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The theory of Brownian motion as described by nonlinear Langevin equations and the corresponding Fokker-Planck equations is discussed. The general problems of the theory of nonlinear Brownian motion considered are: Brownian motion in a medium with nonlinear friction; the critical analysis of three forms of the relevant Langevin and Fokker-Planck equations (Ito’s form, Stratonovich’s form, and the kinetic form); the Smoluchowski equations and master equations for different cases; two methods of transition from master equation to Fokker-Planck equation; master equations for one-step processes; traditional and nontraditional definition of transition probabilities; evolution of free energy and entropy in Brownian motion; Lyapunov functionals. The following particular examples are considered: Brownian motion in self-oscillatory systems; H-theorem for the van der Pol oscillator; S-theorem; oscillator with inertial nonlinearity; bifurcation of energy of the limiting cycle; oscillator with multistable stationary states; oscillators in discrete time; bifurcations of energy of the limiting cycle and the period of oscillations; criterion of instability upon transition to discrete time, based on the H-theorem; Brownian motion of quantum atoms oscillators in the equilibrium electromagnetic field; Brownian motion in chemically reacting systems; partially ionised plasmas; the Malthus-Verhulst process.

Fulltext is available at IOP
PACS: 05.40.+j
DOI: 10.1070/PU1994v037n08ABEH000038
Citation: Klimontovich Yu L "Nonlinear Brownian motion" Phys. Usp. 37 737–766 (1994)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Климонтович Ю Л «Нелинейное броуновское движение» УФН 164 811–844 (1994); DOI: 10.3367/UFNr.0164.199408b.0811

References (57) Cited by (110) Similar articles (20) ↓

  1. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  2. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particles59 109–120 (2016)
  3. B.M. Smirnov “Electrical cycle in the Earth’s atmosphere57 1041–1062 (2014)
  4. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  5. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheres51 577–589 (2008)
  6. V.S. Anishchenko, A.B. Neiman et alStochastic resonance: noise-enhanced order42 7–36 (1999)
  7. A.I. Olemskoi “Theory of stochastic systems with singular multiplicative noise41 269–301 (1998)
  8. G.R. Ivanitskii, A.B. Medvinskii, M.A. Tsyganov “From the dynamics of population autowaves generated by living cells to neuroinformatics37 961–989 (1994)
  9. Yu.L. Klimontovich “Problems in the statistical theory of open systems: Criteria for the relative degree of order in self-organization processes32 416–433 (1989)
  10. A. Loskutov “Fascination of chaos53 1257–1280 (2010)
  11. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutions55 356–381 (2012)
  12. G.R. Ivanitskii, A.B. Medvinskii et alFrom Maxwell’s demon to the self-organization of mass transfer processes in living systems41 1115–1126 (1998)
  13. Yu.L. Klimontovich “Physics of collisionless plasma40 21–51 (1997)
  14. H.D. Abarbanel, M.I. Rabinovich et alSynchronisation in neural networks39 337–362 (1996)
  15. V.M. Mostepanenko, N.N. Trunov “The Casimir effect and its applications31 965–987 (1988)
  16. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)
  17. Yu.S. Barash, V.L. Ginzburg “Some problems in the theory of van der Waals forces27 467–491 (1984)
  18. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii “General theory of van der Waals’ forces4 153–176 (1961)
  19. G.I. Strelkova, V.S. Anishchenko “Spatio-temporal structures in ensembles of coupled chaotic systems63 (2) (2020)
  20. E.A. Vinogradov “Semiconductor microcavity polaritons45 1213–1250 (2002)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions