Issues

 / 

1994

 / 

April

  

Conferences and symposia


Virial theorem and some properties of the electron gas in metals

 a,  b
a Institute of Physicotechnical Problems, Dubna, Moscow Region, Russian Federation
b Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, 141980, Russian Federation

The status of the virial theorem in classical and quantum mechanics is discussed and the principal virial relationships are derived. A model of the electron Fermi gas in a metal is considered taking explicit account of the consequences of the virial theorem for a stable system of electrons and ions interacting in accordance with the Coulomb law. This model is used to obtain expressions for the total energy and the chemical potential of the conduction electrons in undeformed and deformed metals. These expressions are used to estimate the equilibrium concentrations of electrons and ions, the electron work function of a metal, and the contribution of the collective-state electrons to the bulk modulus of a metal. It is shown that an electric field appears in an inhomogeneously deformed metal and that this field is proportional to the gradient of the bulk strains. A space charge, which is compensated by a surface charge of opposite sign, also appears in such a metal.

Fulltext pdf (372 KB)
Fulltext is also available at DOI: 10.1070/PU1994v037n04ABEH000018
PACS: 71.45.−d, 72.15.Eb, 62.20.Dc, 73.30.+y (all)
DOI: 10.1070/PU1994v037n04ABEH000018
URL: https://ufn.ru/en/articles/1994/4/f/
A1994NM92600007
Citation: Vasil’ev B V, Lyuboshits V L "Virial theorem and some properties of the electron gas in metals" Phys. Usp. 37 345–351 (1994)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Васильев Б В, Любошиц В Л «Теорема вириала и некоторые свойства электронного газа в металлах» УФН 164 367–374 (1994); DOI: 10.3367/UFNr.0164.199404f.0367

Cited by (17) ↓ Similar articles (20)

  1. Poklonski N A, Vyrko S A, Dzeraviaha A N Journal Of The Belarusian State University. Physics (2) 28 (2020)
  2. Poklonski N A, Dzeraviaha A N, Vyrko S A Vescì Akademìì Navuk Belarusì. Seryâ Fizika-matematyčnyh Navuk 56 239 (2020)
  3. Poklonski N A, Dzeraviaha A N, Vyrko S A Vescì Akademìì Navuk Belarusì. Seryâ Fizika-matematyčnyh Navuk 56 92 (2020)
  4. Reshetniak V V, Starostin A N, Filippov A V J. Exp. Theor. Phys. 127 1153 (2018)
  5. Bobrov V B, Trigger S A J Low Temp Phys 186 1 (2017)
  6. Poklonski N A, Vyrko S A et al Semiconductors 50 722 (2016)
  7. Sokolik A A, Zabolotskiy A D, Lozovik Yu E Phys. Rev. B 93 (19) (2016)
  8. Vasiliev B V IJG 06 1233 (2015)
  9. POKLONSKI N A, VLASSOV A T et al Physics, Chemistry and Applications of Nanostructures, (2013) p. 36
  10. Vasiliev B V Physica C: Superconductivity 483 233 (2012)
  11. Poklonski N A, Vyrko S A et al 110 (12) (2011)
  12. Vasiliev B V Physica C: Superconductivity 471 277 (2011)
  13. Khisamov R Kh, Safarov I M et al Tech. Phys. 56 1661 (2011)
  14. Bobrov V B, Trigger S A, Zagorodny A Phys. Rev. A 82 (4) (2010)
  15. Bobrov V B, Trigger S A et al Phys. Rev. E 82 (1) (2010)
  16. Ferro F, Lavagno A, Quarati P Physics Letters A 336 370 (2005)
  17. Zakharov A G, Poklonskii N A et al Phys. Solid State 42 664 (2000)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions