Issues

 / 

1993

 / 

November

  

From the current literature


Intercalation by atoms of a two-dimensional graphite film on a metal

Intercalation by atoms (Cs, K, Ba, Pt, Si, C,...) of a monolayer graphite film deposited on a metal (Ir, Re,...) is reviewed. Atoms with low ionization potential (Cs, K, Ba,...) form a monolayer film of the intercalate under the graphite layer, whereas atoms with high unionization potential (Pt, Si, C,...) form a thick multilayer film. The high intercalation efficiency can be accounted for by weak bonding (physisorption) of the graphite film to the metal. An intercalation mechanism is proposed. The superefficient diffusion of intercalated atoms into metals is discussed.

Fulltext pdf (913 KB)
Fulltext is also available at DOI: 10.1070/PU1993v036n11ABEH002180
PACS: 68.55.Jk, 68.43.Mn, 68.65.Ac (all)
DOI: 10.1070/PU1993v036n11ABEH002180
URL: https://ufn.ru/en/articles/1993/11/c/
Citation: Tontegode A Ya, Rut’kov E V "Intercalation by atoms of a two-dimensional graphite film on a metal" Phys. Usp. 36 (11) 1053–1067 (1993)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Тонтегоде А Я, Рутьков Е В «Интеркалирование атомами двумерной графитовой пленки на металлах» УФН 163 (11) 57–74 (1993); DOI: 10.3367/UFNr.0163.199311c.0057

References (55) Cited by (62) ↓ Similar articles (4)

  1. Dudnikov V Springer Series On Atomic, Optical, And Plasma Physics Vol. Development and Applications of Negative Ion SourcesSurface Plasma Negative Ion Sources125 Chapter 5 (2023) p. 223
  2. Ronci F, Colonna S et al Applied Surface Science 611 155763 (2023)
  3. Kawano H Progress In Surface Science 97 (1) 100583 (2022)
  4. Rut’kov E V, Afanas’eva E Y, Gall N R Surface Science 717 122002 (2022)
  5. Rut’kov E V, Gall’ N R Phys. Solid State 62 (3) 580 (2020)
  6. Dudnikov V Springer Series On Atomic, Optical, And Plasma Physics Vol. Development and Applications of Negative Ion SourcesSurface Plasma Negative Ion Sources110 Chapter 5 (2019) p. 155
  7. Briggs N, Gebeyehu Z M et al Nanoscale 11 (33) 15440 (2019)
  8. Kuznetsov Yu A, Lapushkin M N et al Phys. Solid State 61 (8) 1478 (2019)
  9. Rut’kov E V, Afanas’eva E Yu, Gall N R Tech. Phys. 63 (12) 1876 (2018)
  10. Rut’kov E V, Afanas’eva E Yu et al Phys. Solid State 60 (5) 1041 (2018)
  11. Kuznetsov Yu A, Rut’kov E V, Gall N R Tech. Phys. Lett. 44 (6) 551 (2018)
  12. Dudnikov V, Dudnikov A (AIP Conference Proceedings) Vol. 2052 (2018) p. 020007
  13. Rut’kov E V, Gall N R Semiconductors 52 (9) 1198 (2018)
  14. Herbig Ch, Knispel T et al Nano Lett. 17 (5) 3105 (2017)
  15. Gomoyunova M V, Grebenyuk G S et al Phys. Solid State 59 (10) 2053 (2017)
  16. Rut’kov E V, Afanas’eva E Yu et al Tech. Phys. 61 (11) 1724 (2016)
  17. Afanas’eva E Yu, Rut’kov E V, Gall N R Phys. Solid State 58 (7) 1463 (2016)
  18. Orujov A, Aliyev I JMP 07 (01) 114 (2016)
  19. Bernatskii D P, Pavlov V G Phys. Solid State 58 (1) 204 (2016)
  20. Rut’kov E V, Gall’ N R Phys. Solid State 57 (6) 1249 (2015)
  21. Rybkina A A, Rybkin A G et al Surface Science 609 7 (2013)
  22. Orudzhov A K Phys. Metals Metallogr. 114 (1) 63 (2013)
  23. Fabiane M, Khamlich S et al AIP Advances 3 (11) (2013)
  24. Kindrachuk M V, Mishchuk O A et al Usp. Fiz. Met. 14 (1) 85 (2013)
  25. Bakhtinov A P, Boledzyuk V B et al Phys. Solid State 55 (6) 1148 (2013)
  26. Rut’kov E V, Gall’ N R Tech. Phys. 58 (6) 799 (2013)
  27. Vilkov O, Fedorov A et al Sci Rep 3 (1) (2013)
  28. Orudzhov A K Phys. Metals Metallogr. 113 (8) 771 (2012)
  29. Pletikosić I, Kralj M et al Phys. Rev. B 85 (15) (2012)
  30. Bernatskii D P, Pavlov V G Bull. Russ. Acad. Sci. Phys. 76 (7) 823 (2012)
  31. Rut’kov E V, Kuz’michev A V, Gall’ N R Phys. Solid State 53 (5) 1092 (2011)
  32. Orudzhov A K Phys. Metals Metallogr. 111 (6) 598 (2011)
  33. Koropov A V J. Synch. Investig. 5 (4) 780 (2011)
  34. Shikin A M, Rybkin A G et al Nanotechnol Russia 6 (9-10) 625 (2011)
  35. Rut’kov E V, Kuz’michev A V, Gall N R Jetp Lett. 93 (3) 151 (2011)
  36. Rut’kov E V, Gall’ N R Phys. Solid State 51 (8) 1738 (2009)
  37. Rut’kov E V, Gall N R Semiconductors 43 (10) 1255 (2009)
  38. Rut’kov E V, Gall N R Bull. Russ. Acad. Sci. Phys. 73 (5) 667 (2009)
  39. Rut’kov E V, Gall N R Tech. Phys. Lett. 35 (8) 740 (2009)
  40. Rut’kov E V, Gall’ N R Jetp Lett. 88 (4) 268 (2008)
  41. Kawano H Progress In Surface Science 83 (1-2) 1 (2008)
  42. Kawano H Applied Surface Science 252 (14) 5233 (2006)
  43. KAWANO HIROYUKI Surf. Rev. Lett. 12 (01) 107 (2005)
  44. Gall’ N R, Rut’kov E V, Tontegode A Ya Phys. Solid State 46 (2) 371 (2004)
  45. Starodubov A G, Medvetskii M A et al Phys. Solid State 46 (7) 1340 (2004)
  46. Waqar Z, Makarenko I V et al J. Mater. Res. 19 (4) 1058 (2004)
  47. Bernatskii D P, Chernyshev A V, Ivanov-Omskii V I Applied Surface Science 215 (1-4) 222 (2003)
  48. Gall N R, Rut’kov E V, Tontegode A Ya Jetp Lett. 75 (1) 26 (2002)
  49. Dedkov Yu S, Shikin A M et al Phys. Rev. B 64 (3) (2001)
  50. Shikin A M, Poigin M V et al Phys. Solid State 42 (6) 1170 (2000)
  51. Gall’ N R, Rut’kov E V et al Jetp Lett. 71 (11) 457 (2000)
  52. Shikin A M, Dedkov Yu S et al Surface Science 452 (1-3) 1 (2000)
  53. Shikin A M, Farı́as D et al Surface Science 424 (1) 155 (1999)
  54. Farías D, Shikin A M et al J. Phys.: Condens. Matter 11 (43) 8453 (1999)
  55. Gall’ N R, Rut’kov E V et al Tech. Phys. 44 (9) 1066 (1999)
  56. Gall N R, Rut’kov E V et al Synthetic Metals 97 (3) 171 (1998)
  57. Shikin A M, Farías D, Rieder K H Europhys. Lett. 44 (1) 44 (1998)
  58. Masterov V F, Prikhod’ko A V et al Phys. Solid State 39 (1) 84 (1997)
  59. Nienhaus H, Elsbergen V V MRS Proc. 483 (1997)
  60. Gall N R, Rut’kov E V, Tontegode A Ya 9th International Vacuum Microelectronics Conference, (1996) p. 192
  61. Tontegode A Ya, Yusifov F K Applied Surface Science 90 (2) 185 (1995)
  62. Rut’kov E V, Tontegode A Ya, Usufov M M Phys. Rev. Lett. 74 (5) 758 (1995)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions