Issues

 / 

1991

 / 

February

  

Reviews of topical problems


Phase space of mechanical systems with a gauge group

Publications on the structure of the physical phase space (PS) of dynamical systems with gauge symmetry are reviewed. The recently discovered phenomenon of reduction of the phase space of the physical degrees of freedom is studied systematically on mechanical models with a finite number of dynamical variables. In the simplest case of one degree of freedom this phenomenon consists of replacement of the phase space by a cone that is unfoldable into a half-plane. In the general case the reduction of the phase space is related with the existence of a residual discrete gauge group, acting in the physical space after the unphysical variables are eliminated. In ``natural'' gauges for the adjoint representation this group is isomorphic to Weyl's group. A wide class of modes with both the normal and Grassmann (anticommuting) variables and with arbitrary compact gauge groups is studied; the classical analysis and the quantum analysis are performed in parallel. It is shown that the reduction of the phase space radically changes the physical characteristics of the system, in particular its energy spectrum. A significant part of the review is devoted to a description of such systems on the basis of the method of Hamiltonian path integrals (HPIs). It is shown how the HPI is modified in the case of an arbitrary gauge group. The main attention is devoted to the correct formulation of the HPI with a poor choice of gauge. The analysis performed can serve as an elementary illustration of the well-known problem of copies in the theory of Yang--Mills fields. The dependence of the quasiclassical description on the structure of the phase space is demonstrated on a model with quantum-mechanical instantons.

Fulltext pdf (1.9 MB)
Fulltext is also available at DOI: 10.1070/PU1991v034n02ABEH002339
PACS: 11.15.−q, 11.10.Ef, 12.20.−m, 03.65.Sq, 03.65.Ge (all)
DOI: 10.1070/PU1991v034n02ABEH002339
URL: https://ufn.ru/en/articles/1991/2/b/
Citation: Prokhorov L V, Shabanov S V "Phase space of mechanical systems with a gauge group" Sov. Phys. Usp. 34 (2) 108–140 (1991)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Прохоров Л В, Шабанов С В «Фазовое пространство механических систем с калибровочной группой» УФН 161 (2) 13–75 (1991); DOI: 10.3367/UFNr.0161.199102b.0013

References (80) Cited by (21) Similar articles (20) ↓

  1. E.E. Boos, O. Brandt et alThe top quark (20 years after the discovery)Phys. Usp. 58 1133–1158 (2015)
  2. A.V. Marshakov “String theory or field theory?Phys. Usp. 45 915–954 (2002)
  3. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theoriesPhys. Usp. 38 591–607 (1995)
  4. A.B. Shvartsburg “Dispersion of electromagnetic waves in stratified and nonstationary media (exactly solvable models)Phys. Usp. 43 1201–1228 (2000)
  5. A.B. Shvartsburg “Tunneling of electromagnetic waves: paradoxes and prospectsPhys. Usp. 50 37–51 (2007)
  6. L.V. Prokhorov “Infrared and collinear divergences in gauge theoriesPhys. Usp. 42 1099–1120 (1999)
  7. S.N. Vergeles, N.N. Nikolaev et alGeneral relativity effects in precision spin experimental tests of fundamental symmetriesPhys. Usp. 66 109–147 (2023)
  8. D.S. Kuz’menko, Yu.A. Simonov, V.I. Shevchenko “Vacuum, confinement, and QCD strings in the vacuum correlator methodPhys. Usp. 47 1–15 (2004)
  9. S.S. Gershtein, V.V. Kiselev et alPhysics of Bc-mesonsPhys. Usp. 38 1–37 (1995)
  10. K.N. Mukhin, O.O. Patarakin “Δ isobar in nuclei (review of experimental data)Phys. Usp. 38 803–844 (1995)
  11. N.V. Krasnikov, V.A. Matveev “The search for new physics at the Large Hadron ColliderPhys. Usp. 47 643–670 (2004)
  12. I.I. Roizen, E.L. Feinberg, O.D. Chernavskaya “Color deconfinement and subhadronic matter: phase states and the role of constituent quarksPhys. Usp. 47 427–446 (2004)
  13. V.A. Matveev, V.A. Rubakov et alNonconservation of baryon number under extremal conditionsSov. Phys. Usp. 31 916–939 (1988)
  14. V.I. Ogievetskii, L. Mezincescu “Boson-fermion symmetries and superfieldsSov. Phys. Usp. 18 960–982 (1975)
  15. A.M. Perelomov “Generalized coherent states and some of their applicationsSov. Phys. Usp. 20 703–720 (1977)
  16. I.V. Andreev “Chromodynamics as a theory of the strong interactionSov. Phys. Usp. 29 971–979 (1986)
  17. M.A. Shifman “Anomalies and low-energy theorems of quantum chromodynamicsSov. Phys. Usp. 32 289–309 (1989)
  18. P.V. Elyutin “The quantum chaos problemSov. Phys. Usp. 31 597–622 (1988)
  19. I.V. Krive, A.S. Rozhavskii “Fractional charge in quantum field theory and solid-state physicsSov. Phys. Usp. 30 370–392 (1987)
  20. M.A. Ol’shanetskii “A short guide to modern geometry for physicistsSov. Phys. Usp. 25 123–129 (1982)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions