Issues

 / 

1989

 / 

August

  

Methodological notes


Self-oscillatory systems with high-frequency energy sources

 a,
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

Three types of systems in which the excitation of oscillations due to high-frequency energy sources is possible have been considered. Despite widely held ideas, one can classify such systems as self-oscillatory. Systems with times of interaction with the energy source that are short in comparison with the period of the oscillations which arise are the first type. Systems of the second type are those having two degrees of freedom, one of which is high-frequency and the other is low-frequency. Transfer of the energy of the high-frequency source to the energy of low-frequency oscillations is achieved by the formation of combination frequencies. Thermomechanical systems are the third type. The role of the high-frequency energy source is to maintain the necessary temperature of the element being heated. Self-modulation of the parameters is the cause of oscillation excitation in such systems.

Fulltext pdf (366 KB)
Fulltext is also available at DOI: 10.1070/PU1989v032n08ABEH002750
PACS: 05.45.−a
DOI: 10.1070/PU1989v032n08ABEH002750
URL: https://ufn.ru/en/articles/1989/8/f/
Citation: Landa P S, Duboshinskii Ya B "Self-oscillatory systems with high-frequency energy sources" Sov. Phys. Usp. 32 723–731 (1989)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ланда П С, Дубошинский Я Б «Автоколебательные системы с высокочастотными источниками энергии» УФН 158 729–742 (1989); DOI: 10.3367/UFNr.0158.198908g.0729

References (73) Cited by (18) Similar articles (20) ↓

  1. D.I. Penner, D.B. Duboshinskii et alAsynchronous excitation of undamped oscillationsSov. Phys. Usp. 16 158–160 (1973)
  2. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  3. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  4. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  5. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  6. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  7. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  8. P.S. Landa, V.F. Marchenko “On the linear theory of waves in media with periodic structuresSov. Phys. Usp. 34 (9) 830–834 (1991)
  9. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  10. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  11. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  12. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  13. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  14. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experimentPhys. Usp. 52 235–255 (2009)
  15. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  16. N.V. Evdokimov, V.P. Komolov, P.V. Komolov “Dynamic chaos interference in Hamiltonian systems: experiment and potential radiophysics applicationsPhys. Usp. 44 735–754 (2001)
  17. M.Ya. Agre “Multipole expansions in magnetostaticsPhys. Usp. 54 167–180 (2011)
  18. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equationsPhys. Usp. 59 669–688 (2016)
  19. A.A. Rukhadze, V.P. Silin “From Lord Rayleigh to Professor A.A. Vlasov (from 1906 to 1945)Phys. Usp. 62 691–698 (2019)
  20. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions