Processing math: 100%

Issues

 / 

1989

 / 

December

  

Reviews of topical problems


Magnetism in high-temperature superconducting compounds

 a, ,  a
a Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation

Experimental data on the magnetic properties of copper oxide high-temperature superconductors (HTSCs) and their theoretical interpretation in terms of existing models are systematically reviewed. The crystal structure of the four existing classes of HTSCs (lanthanum, yttriumbarium, bismuth, and thallium) is described, and their band structure is analyzed on the basis of their crystal chemistry. The T, x and T, δ phase diagrams are reproduced for the well-studied compounds (La2xSrxCuO4 and YBa2Cu3O7δ). The magnetic structure of these compounds and their evolution with increasing concentration of impurities (x) and oxygen vacancies (δ) are analyzed. Data on the inelastic magnetic scattering of neutrons is discussed in detail, and it is shown that both compounds are quasi-two-dimensional antiferromagnets with spin 1/2. For values of x and δ for which there is no long-range magnetic order, both compounds exhibit two-dimensional antiferromagnetic correlations on the CuO2 planes and high-energy spin excitations. This type of state is described as a ``quantum spin fluid''. The excitations may be the carriers of the pairing interaction between electrons in HTSCs. Basic theoretical models used to describe the physical properties of HTSCs are presented, including the two-dimensional Heisenberg model with spin 1/2, the nonlinear σ-model, and the Hubbard model with strong electron correlation near the half-filled state. Antiferromagnetism in HTSC compounds and its disappearance with increasing x or δ can be understood in terms of these models. The fundamentals of Anderson's theory of resonating valence bonds are presented together with his attempt to use it to explain the physical properties of copper oxide HTSCs in terms of neutral fermions (spinons) and charged bosons (holons). Alternative mechanisms are also discussed for electron pairing by magnetic fluctuations near the phase transition point with the formation of spin density waves. These mechanisms are based on the fact that the Fermi surface may be unstable near the half-filled state with respect to the formation of a dielectric state with a spin density wave. It is concluded that currently available experimental data on the magnetic properties of the HTSCs, and also other experimental data, cannot as yet be used as a basis for choosing between existing theories of high-temperature superconductivity. Nevertheless, many of the magnetic properties of copper oxides in their normal phase are satisfactorily interpreted by these theories.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.1070/PU1989v032n12ABEH002783
PACS: 74.25.Ha, 74.72.Dn, 74.72.Bk, 74.25.Jb, 74.25.Dw (all)
DOI: 10.1070/PU1989v032n12ABEH002783
URL: https://ufn.ru/en/articles/1989/12/b/
Citation: Izyumov Yu A, Plakida N M, Skryabin Yu N "Magnetism in high-temperature superconducting compounds" Sov. Phys. Usp. 32 1060–1083 (1989)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Изюмов Ю А, Плакида Н М, Скрябин Ю Н «Магнетизм в высокотемпературных сверхпроводящих соединениях» УФН 159 621–663 (1989); DOI: 10.3367/UFNr.0159.198912b.0621

References (110) Cited by (63) ↓ Similar articles (20)

  1. Solovjov A L, Rogacki K 49 345 (2023)
  2. Mel’nikov A S, Mironov S V et al Uspekhi Fizicheskikh Nauk 192 1339 (2022) [Mel’nikov A S, Mironov S V et al Phys. Usp. 65 1248 (2022)]
  3. Eroshenko Yu N Phys.-Usp. 63 942 (2020)
  4. Dzhumanov S, Khidirov I et al Ukr. J. Phys. 64 322 (2019)
  5. Dzhumanov S, Kurbanov U T Mod. Phys. Lett. B 32 1850312 (2018)
  6. Val’kov, Val’kov i dr Teoreticheskaya Matematicheskaya Fizika 174 484 (2013)
  7. Morozov Yu G, Ortega D et al Journal Of Alloys And Compounds 572 150 (2013)
  8. Lobanov B V, Murzashev A I Phys. Solid State 55 868 (2013)
  9. Val’kov V V, Zlotnikov A O Theor Math Phys 174 421 (2013)
  10. Arutyunova T E, Mironov G I, Murzashev A I Phys. Solid State 54 1917 (2012)
  11. Murzashev A I Russ Phys J 55 524 (2012)
  12. Sadovskii M V Uspekhi Fizicheskikh Nauk 178 1243 (2008)
  13. [Sadovskii M V Phys.-Usp. 51 1201 (2008)]
  14. Kubarev S I, Shigaev A S et al Russ. J. Phys. Chem. B 2 329 (2008)
  15. Kubarev S I, Belyaev A A, Kubareva I S Dokl Phys Chem 401 32 (2005)
  16. Lomtev A I Tech. Phys. 48 1424 (2003)
  17. Lomtev A I Phys. Solid State 45 1423 (2003)
  18. Palistrant M E, Kochorbe F G Int. J. Mod. Phys. B 17 2545 (2003)
  19. Samovarov V N, Vakula V L et al 28 674 (2002)
  20. Lyubutin I S, Frolov K V J. Exp. Theor. Phys. 93 609 (2001)
  21. Lomtev A I Phys. Solid State 43 2025 (2001)
  22. Eremenko V V, Samovarov V N et al 27 981 (2001)
  23. Mikhailova G N, Prokhorov A M et al Inorg Mater 36 807 (2000)
  24. Lomtev A I Phys. Solid State 42 15 (2000)
  25. Lomtev A I Jetp Lett. 71 426 (2000)
  26. Lomtev A I Tech. Phys. 45 1159 (2000)
  27. Lomtev A I Phys. Solid State 42 1584 (2000)
  28. Gorelov B M J. Exp. Theor. Phys. 89 311 (1999)
  29. Lomtev A I Jetp Lett. 69 148 (1999)
  30. Yablokov Yu V, Ivanova T A, Usachev A E Phys. Solid State 40 569 (1998)
  31. Agafonov A I, Manykin É A J. Exp. Theor. Phys. 87 956 (1998)
  32. Shchedrina N V, Shchedrin M I Phys. Solid State 40 552 (1998)
  33. Ivanov M A, Skripnik Yu V, Loktev V M 22 907 (1996)
  34. Loktev V M 22 1 (1996)
  35. Lyubutin I S, Lin S T et al Physica C: Superconductivity 248 235 (1995)
  36. Pashitskiĭ È A 21 763 (1995)
  37. Antsygina T N, Slyusarev V A 21 93 (1995)
  38. Dzhumanov S, Khabibullaev P K Pramana - J Phys 45 385 (1995)
  39. Pashkevich Yu G, Fedorov S A 20 180 (1994)
  40. Kristoffel N, Konsin P, Örd T Riv. Nuovo Cim. 17 1 (1994)
  41. Krivoruchko V N, Zubov E E 20 418 (1994)
  42. Gabovich A M 19 457 (1993)
  43. Ivanchenko Yu M, Filippov A É, Radievskii A V 19 468 (1993)
  44. Bazhenov A V, Gorbunov A V et al Physica C: Superconductivity 208 197 (1993)
  45. Gaididei Yu B, Loktev V M High-Tc Superconductivity Research Reports In Physics Chapter 9 (1992) p. 126
  46. Pogorelov Yu G J. Phys.: Condens. Matter 4 7135 (1992)
  47. Ivanov M A, Loktev V M, Pogorelov Yu G High-Tc Superconductivity Research Reports In Physics Chapter 5 (1992) p. 68
  48. Baryakhtar V G, Belokolos E D, Korostil A M Physica Status Solidi (b) 169 105 (1992)
  49. Ovchinnikov S G, Petrakovsky O G High-Tc Superconductivity Research Reports In Physics Chapter 3 (1992) p. 36
  50. Voitenko A I, Gabovich A M, Shpigel’ A S 18 75 (1992)
  51. Romanyukha A A, Shvachko Yu N, Ustinov V V Uspekhi Fizicheskikh Nauk 161 37 (1991)
  52. Koka S, Shrivastava K N Solid State Communications 80 933 (1991)
  53. Ovchinnikov S G, Petrakovsky O G J Supercond 4 437 (1991)
  54. Izyumov Yu A Uspekhi Fizicheskikh Nauk 161 1 (1991)
  55. Ivanov M A, Loktev V M, Pogorelov Yu G Physica B: Condensed Matter 169 579 (1991)
  56. Solontsov A Z, Khrushch I V 17 571 (1991)
  57. Sarry M F Uspekhi Fizicheskikh Nauk 161 47 (1991)
  58. Rubin P, Sherman A Physica Status Solidi (b) 166 161 (1991)
  59. Kristoffel N N, Rubin P E 17 640 (1991)
  60. Flambaum V V, Sushkov O P Physica C: Superconductivity 175 347 (1991)
  61. Belousov Yu M, Gorbunov V N et al Sov. Phys. Usp. 33 911 (1990)
  62. Loktev V M Physica Status Solidi (b) 161 731 (1990)
  63. Sherman A V Physica C: Superconductivity 171 395 (1990)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions