Issues

 / 

1980

 / 

December

  

Reviews of topical problems


lonization waves in low-temperature plasmas

 a, ,
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The ionizational instability, which results in the excitation of moving and standing striations, is one of the most common instabilities in low-temperature plasmas. Phenomena analogous to striations are encountered not only in a variety of fields in physics but also in related sciences, such as chemistry, biology, and ecology. Striations are thus of general scientific interest. This paper reviews experimental and theoretical research on striations published for the most part over the past decade and thus after the 1968 publication of the reviews by Nedospasov, Pekarek, and Oleson and Cooper. New and more comprehensive scaling laws are used for a systematic description of the regions in which moving and stationary striations exist in inert and molecular gases. From the standpoint of the general theory of oscillations these striations may be thought of as a particular case of a very distinctive wave process with "unusual" properties. It is thus useful to describe the striations by an oscillation approach involving the methods of wave theory. The kinetic theory of striations has been developed markedly in recent years, but the usefulness of the hydrodynamic theory of striations, modified appropriately, has not yet been exhausted, at least with regard to a qualitative explanation of the experimental properties of striations. The linear and nonlinear hydrodynamic theories for the formation of moving and stationary striations at intermediate and high currents, incorporating such factors as the deviation from a Maxwellian electron distribution function, oscillations in the density of metastable atoms, and wave reflection from boundaries, yield several results: the conditions for the spontaneous excitation of striations, the shape of the striations, an explanation for the existence of a striation-free region, an explanation for the excitation of one or several types of striations, confirmation of Novak's rule stating that the potential drop over the length of a striation remains constant, etc. The nonlinearity of the system proves important in the study of such questions as the asynchronous suppression of striations and the excitation of stationary striations in inert and molecular gases.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.1070/PU1980v023n12ABEH005075
PACS: 52.35.Py, 52.35.Bj, 52.35.Mw (all)
DOI: 10.1070/PU1980v023n12ABEH005075
URL: https://ufn.ru/en/articles/1980/12/a/
Citation: Landa P S, Miskinova N A, Ponomarev Yu V "lonization waves in low-temperature plasmas" Sov. Phys. Usp. 23 813–834 (1980)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ланда П С, Мискинова Н А, Пономарев Ю В «Ионизационные волны в низкотемпературной плазме» УФН 132 601–637 (1980); DOI: 10.3367/UFNr.0132.198012a.0601

Cited by (80) Similar articles (20) ↓

  1. A.V. Nedospasov “Striations11 174–187 (1968)
  2. L. Pekarek “Ionization waves (striations) in a discharge plasma11 188–208 (1968)
  3. L.D. Tsendin “Nonlocal electron kinetics in gas-discharge plasma53 133–157 (2010)
  4. V.E. Fortov, A.G. Khrapak et alDusty plasmas47 447–492 (2004)
  5. V.P. Silin “Anomalous nonlinear dissipation of high-frequency radio waves in plasma15 742–758 (1973)
  6. Yu.L. Klimontovich, A.S. Kovalev, P.S. Landa “Natural fluctuations in lasers15 95–113 (1972)
  7. B.S. Kerner, V.V. Osipov “Autosolitons32 101–138 (1989)
  8. V.L. Ginzburg, A.V. Gurevich “Nonlinear phenomena in a Plasma located in an alternating electromagnetic field3 115–146 (1960)
  9. L.M. Gorbunov “Hydrodynamics of plasma in a strong high-frequency field16 217–235 (1973)
  10. A.V. Nedospasov “Current-convective instability of a gas-discharge plasma18 588–599 (1975)
  11. V.V. Vladimirov “Helical instability in electron-hole plasma in semiconductors18 37–50 (1975)
  12. S.M. Osovets “Dynamic methods of confinement and stabilization of hot plasma17 239–262 (1974)
  13. T.I. Belova, A.E. Kudryavtsev “Solitons and their interactions in classical field theory40 359–386 (1997)
  14. V.D. Rusanov, A.A. Fridman, G.V. Sholin “The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules24 447–474 (1981)
  15. V.P. Kovalenko “Electron bunches in nonlinear collective beam-plasma interaction26 116–137 (1983)
  16. V.V. Arsenin, V.A. Chuyanov “Suppression of plasma instabilities by the feedback method20 736–762 (1977)
  17. L.M. Kovrizhnykh, S.V. Shchepetov “Present state of the theory of the MHD equilibrium and stability of stellarator plasmas29 343–363 (1986)
  18. F.G. Bass, Yu.G. Gurevich “Nonlinear theory of the propagation of electromagnetic waves in a Solid-state plasma and in a Gaseous discharge14 113–124 (1971)
  19. L.M. Biberman, V.S. Vorob’ev, I.T. Yakubov “Low-temperature plasmas with nonequilibrium ionization22 411–432 (1979)
  20. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectives56 429–464 (2013)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions