Issues

 / 

1980

 / 

December

  

Reviews of topical problems


lonization waves in low-temperature plasmas

 a, ,
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The ionizational instability, which results in the excitation of moving and standing striations, is one of the most common instabilities in low-temperature plasmas. Phenomena analogous to striations are encountered not only in a variety of fields in physics but also in related sciences, such as chemistry, biology, and ecology. Striations are thus of general scientific interest. This paper reviews experimental and theoretical research on striations published for the most part over the past decade and thus after the 1968 publication of the reviews by Nedospasov, Pekarek, and Oleson and Cooper. New and more comprehensive scaling laws are used for a systematic description of the regions in which moving and stationary striations exist in inert and molecular gases. From the standpoint of the general theory of oscillations these striations may be thought of as a particular case of a very distinctive wave process with "unusual" properties. It is thus useful to describe the striations by an oscillation approach involving the methods of wave theory. The kinetic theory of striations has been developed markedly in recent years, but the usefulness of the hydrodynamic theory of striations, modified appropriately, has not yet been exhausted, at least with regard to a qualitative explanation of the experimental properties of striations. The linear and nonlinear hydrodynamic theories for the formation of moving and stationary striations at intermediate and high currents, incorporating such factors as the deviation from a Maxwellian electron distribution function, oscillations in the density of metastable atoms, and wave reflection from boundaries, yield several results: the conditions for the spontaneous excitation of striations, the shape of the striations, an explanation for the existence of a striation-free region, an explanation for the excitation of one or several types of striations, confirmation of Novak's rule stating that the potential drop over the length of a striation remains constant, etc. The nonlinearity of the system proves important in the study of such questions as the asynchronous suppression of striations and the excitation of stationary striations in inert and molecular gases.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.1070/PU1980v023n12ABEH005075
PACS: 52.35.Py, 52.35.Bj, 52.35.Mw (all)
DOI: 10.1070/PU1980v023n12ABEH005075
URL: https://ufn.ru/en/articles/1980/12/a/
Citation: Landa P S, Miskinova N A, Ponomarev Yu V "lonization waves in low-temperature plasmas" Sov. Phys. Usp. 23 813–834 (1980)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ланда П С, Мискинова Н А, Пономарев Ю В «Ионизационные волны в низкотемпературной плазме» УФН 132 601–637 (1980); DOI: 10.3367/UFNr.0132.198012a.0601

Cited by (81) ↓ Similar articles (20)

  1. Pustylnik M, Thomas H M et al Contrib. Plasma Phys (2025)
  2. Levko D, Raja L L Physics of Plasmas 31 (4) (2024)
  3. White Z K, Gott R P et al AIP Advances 13 (8) (2023)
  4. Pavlov S I, Dzlieva E S et al Plasma Phys. Rep. 49 (10) 1199 (2023)
  5. Kodanova S, Abdirakhmanov A et al Contributions To Plasma Physics 62 (10) (2022)
  6. Polyakov D N, Shumova V V, Vasilyak L M Plasma Sources Sci. Technol. 31 (7) 074001 (2022)
  7. Rosenblum M, McClintock P V E Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (12) (2022)
  8. Pustylnik M Y, Pikalev A A et al Contributions To Plasma Physics 61 (10) (2021)
  9. Naumkin V N, Zhukhovitskii D I et al Physics of Plasmas 28 (10) (2021)
  10. Mitic S, Pustylnik M Y et al Phys. Rev. E 103 (6) (2021)
  11. Levko D Physics of Plasmas 28 (1) (2021)
  12. Novikov L A, Ermolenko M A et al J. Phys.: Conf. Ser. 1787 (1) 012055 (2021)
  13. Zhu H, Yao W, Li Zh Plasma Processes & Polymers 17 (9) (2020)
  14. Dzlieva E S, D’yachkov L G et al Plasma Sources Sci. Technol. 29 (8) 085020 (2020)
  15. (PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES AND APPLICATIONS IN PLASMA PHYSICS (AAPP 2019)) Vol. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES AND APPLICATIONS IN PLASMA PHYSICS (AAPP 2019)Constriction and stratification of the positive column of a glow discharge in inert gasesYuriGolubovskiiAlekseiSiaskoSergeiValin2179 (2019) p. 020024
  16. Kurbatov P F Physics of Fluids 31 (11) (2019)
  17. Kurbatov P F Physics of Fluids 31 (2) (2019)
  18. Kumar R, Kumar P AIP Advances 8 (4) (2018)
  19. Golubovskii Yu, Valin S et al Physics of Plasmas 23 (12) (2016)
  20. Encyclopedia of Plasma Technology 0 (2016) p. 529
  21. Golubovskii Yu, Pelyukhova E et al Physics of Plasmas 22 (3) (2015)
  22. Fedoseev A V, Sukhinin G I et al Phys. Rev. E 92 (2) (2015)
  23. Ashurbekov N A, Iminov K O Tech. Phys. 60 (10) 1456 (2015)
  24. Golubovskii Yu B, Nekuchaev V O, Skoblo A Yu Tech. Phys. 59 (12) 1787 (2014)
  25. Miller P M, Koepke M E, Gunell H Plasma Phys. Control. Fusion 56 (1) 015003 (2014)
  26. Vysikaylo P I Surf. Engin. Appl.Electrochem. 49 (3) 222 (2013)
  27. Belonogov A N, Dubinov A E et al IEEE Trans. Plasma Sci. 41 (1) 36 (2013)
  28. Kumar R Physics Letters A 376 (30-31) 2126 (2012)
  29. Ashurbekov N A, Iminov K O et al High Temp 50 (2) 154 (2012)
  30. Kurbatov P F AIP Advances 1 (2) (2011)
  31. Muradov A K, Guseinov T Kh J. Commun. Technol. Electron. 56 (5) 598 (2011)
  32. Hoder Tomáš, Loffhagen D et al Phys. Rev. E 84 (4) (2011)
  33. Ashurbekov N A, Iminov K O et al Tech. Phys. Lett. 36 (8) 766 (2010)
  34. Khomenko S I, Khorunzhiy M O et al 2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES, (2010) p. 1
  35. Kumar R, Bora D Physics of Plasmas 17 (4) (2010)
  36. Landa P S, Trubetskov D I, Gusev V A Uspekhi Fizicheskikh Nauk 179 (3) 255 (2009) [Landa P S, Trubetskov D I, Gusev V A Phys.-Usp. 52 (3) 235 (2009)]
  37. Alexandroaei D IEEE Trans. Plasma Sci. 36 (4) 1010 (2008)
  38. Novopashin S A, Polyakov A A et al Tech. Phys. Lett. 33 (3) 196 (2007)
  39. Shevchenko V V Uspekhi Fizicheskikh Nauk 177 (3) 301 (2007)
  40. Dubinov A E, Sazonkin M A Tech. Phys. Lett. 33 (3) 270 (2007)
  41. Kumar R, Kulkarni S V, Bora D Physics of Plasmas 14 (12) (2007)
  42. Karasev V Yu, Dzlieva E S et al Phys. Rev. E 74 (6) (2006)
  43. Hoshi Y, Yokota A et al Journal of Applied Physics 100 (1) (2006)
  44. Djermanova N, Kiss’ovski Zh, Tsankov T Contrib. Plasma Phys. 46 (4) 312 (2006)
  45. Kolobov V I, Arslanbekov R R IEEE Trans. Plasma Sci. 34 (3) 895 (2006)
  46. Dyatko N A, Latyshev F E et al Plasma Phys. Rep. 32 (2) 158 (2006)
  47. Kolobov V I J. Phys. D: Appl. Phys. 39 (24) R487 (2006)
  48. Bruhn B, Koch B ‐P, Wilke C Contrib. Plasma Phys. 45 (5-6) 328 (2005)
  49. Fedoseev A V, Sukhinin G I Plasma Phys. Rep. 30 (12) 1061 (2004)
  50. Nerushev O A, Novopashin S A et al Tech. Phys. Lett. 30 (2) 106 (2004)
  51. Nerushev O A, Novopashin S A et al Plasma Phys. Rep. 29 (9) 796 (2003)
  52. Atipo A, Bonhomme G, Pierre T Eur. Phys. J. D. 19 (1) 79 (2002)
  53. Churilov G N, Novikov P V et al Carbon 40 (6) 891 (2002)
  54. Churilov G N, Novikov P V et al Phys. Solid State 44 (3) 419 (2002)
  55. Nerushev O A, Novopashin S A et al Tech. Phys. Lett. 27 (2) 118 (2001)
  56. Dinklage A, Wilke C Physics Letters A 277 (6) 331 (2000)
  57. Nerushev O A, Novopashin S A et al Plasma Phys. Rep. 26 (1) 78 (2000)
  58. Dinklage A, Wilke C et al Phys. Rev. E 62 (5) 7219 (2000)
  59. Jonas P, Bruhn B et al Physics of Plasmas 7 (2) 729 (2000)
  60. Nefedov A, Molotkov V 37th Aerospace Sciences Meeting and Exhibit, (1999)
  61. Spatschek K H Plasma Phys. Control. Fusion 41 (3A) A115 (1999)
  62. Sakawa Y, Hori M et al Phys. Rev. E 60 (5) 6007 (1999)
  63. Nerushev O A, Novopashin S A et al Phys. Rev. E 58 (4) 4897 (1998)
  64. Golubovskii Yu B, Nekuchaev V O et al Russ Phys J 40 (1) 92 (1997)
  65. Golubovskii Yu B, Nekuchaev V O et al Tech. Phys. 42 (9) 997 (1997)
  66. Lipaev A M, Molotkov V I et al J. Exp. Theor. Phys. 85 (6) 1110 (1997)
  67. Sirghi L, Ohe K, Popa G J. Phys. D: Appl. Phys. 30 (17) 2431 (1997)
  68. Koch B -P, Goepp N, Bruhn B Phys. Rev. E 56 (2) 2118 (1997)
  69. Golubovskii Yu B, Nekuchaev V O et al Russ Phys J 40 (1) 97 (1997)
  70. Sakawa Y, Hori M et al Physics of Plasmas 4 (5) 1179 (1997)
  71. Christov N N, Pushkarov Kh I Europhys. Lett. 21 (4) 457 (1993)
  72. Ohe K, Hayashi Sh, Kimura T J. Phys. Soc. Jpn. 62 (10) 3476 (1993)
  73. Papanyan V O, Grigoryan Yu I Physics Letters A 164 (1) 43 (1992)
  74. Shivarova A, Tatarova E, Angelova V J. Phys. D: Appl. Phys. 21 (11) 1605 (1988)
  75. Johnson III J A, Ramaiah R Phys. Rev. A 36 (2) 774 (1987)
  76. Anishchenko V S, Melekhin G V et al Radiophys Quantum Electron 29 (8) 692 (1986)
  77. Butakyi V I, Tel’nikhin A A Soviet Physics Journal 28 (2) 94 (1985)
  78. Tatarova E, Stoychev T, Shivarova A Physics Letters A 110 (7-8) 393 (1985)
  79. Serapinas P, Šimkus P Contrib Plasma Phys 24 (4) 367 (1984)
  80. Kadomtsev B B Springer Series In Synergetics Vol. Self-Organization Autowaves and Structures Far from EquilibriumCoherent Structures in Plasmas28 Chapter 4 (1984) p. 29
  81. Chapnik I M J. Phys. D: Appl. Phys. 14 (8) L121 (1981)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions