Issues

 / 

1979

 / 

March

  

Reviews of topical problems


Two approaches to spatial dispersion in molecular scattering of light

,  a, b
a University Academic Division of Nonlinear Optics, Institute of Electro-Physics of the Ural Division of the Russian Academy of Sciences, pr. Lenina 76, Chelyabinsk, 454010, Russian Federation
b College of Optics and Photonics/CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816-2700, USA

A comparative discussion is given of two approaches to taking spatial dispersion into account in the electrodynamic problem of molecular scattering of light. The first, more traditional approach, may be called the ``distributed dipole'' approximation (DDA) and is based on the assumption that any given molecule at a given instant of time scatters light as an electric dipole. In this approach spatial dispersion, i.e., the dependence of the spectrum on the variation of the propagation vector $q=k_1-k_2$, is determined by the correlation of the positions of a given molecule (or of different molecules) at different times. Another approach, developed in recent years by Barron and Buckingham for the problem of light scattering by molecules with right-left asymmetry, may be called the ``local multipole'' approximation (LMA) and is based on taking into account the magnetic dipole and the electric quadrupole as well as the electric dipole interaction of a molecule with the field. A list is given of sets of ``complete experiments'' for measuring all the independent constants that determine the scattering cross section in both approaches. It is shown that the DDA approach is needed to describe the relatively \emph{large }($\sim$1) effects of spatial dispersion in measurements with \emph{high} spectral resolution ($\delta\omega\lesssim qv$, where $v$ is the velocity of sound in the medium) while the LMA approach is required to describe the small effects ($\sim a/\lambda$, where a is the size of the molecule and $\lambda$ is the wavelength) measured with relatively low spectral resolution $\delta\omega\ll qv$. It is asserted that the right-left asymmetry of the differential (with respect to frequency) cross section for scattering in a gas containing chiral molecules need not involve the smallness parameter $ka$ if $ql\sim$1, where $a$ is the size of the molecule and $l$ is the mean free path. Also new lines are predicted in the rotational Raman scattering in a gas--transitions with $\Delta J=\pm1,\pm3$ in the case of noncentrally-symmetric molecules with a cross section $\sim$10$^{-6}$ of the Rayleigh cross section arising in second order in $a/\lambda$ due to the higher multipoles.

Fulltext pdf (1.7 MB)
Fulltext is also available at DOI: 10.1070/PU1979v022n03ABEH005424
PACS: 33.80.−b, 42.65.Cq
DOI: 10.1070/PU1979v022n03ABEH005424
URL: https://ufn.ru/en/articles/1979/3/b/
Citation: Baranova N B, Zel’dovich B Ya "Two approaches to spatial dispersion in molecular scattering of light" Sov. Phys. Usp. 22 143–159 (1979)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Баранова Н Б, Зельдович Б Я «Два подхода к учету пространственной дисперсии в молекулярном рассеянии света» УФН 127 421–450 (1979); DOI: 10.3367/UFNr.0127.197903c.0421

Cited by (10) Similar articles (20) ↓

  1. V.M. Agranovich, V.L. Ginzburg “Crystal optics with allowance for spatial dispersion; exciton theory. ISov. Phys. Usp. 5 323–346 (1962)
  2. A.A. Rukhadze, V.P. Silin “Electrodynamics of media with spatial dispersionSov. Phys. Usp. 4 459–484 (1961)
  3. V.L. Ginzburg “The scattering of light near points of phase transition in solidsSov. Phys. Usp. 5 649–660 (1963)
  4. V.A. Alekseev, B.Ya. Zel’dovich, I.I. Sobel’man “Parity non-conservation effects in atomsSov. Phys. Usp. 19 207–219 (1976)
  5. Yu.N. Polivanov “Raman scattering of light by polaritonsSov. Phys. Usp. 21 805–831 (1978)
  6. É.S. Voronin, V.L. Strizhevskii “Parametric up-conversion of infrared radiation and its applicationsSov. Phys. Usp. 22 26–45 (1979)
  7. S.A. Akhmanov, N.I. Koroteev “Spectroscopy of light scattering and nonlinear optics. Nonlinear-optical methods of active spectroscopy of Raman and Rayleigh scatteringSov. Phys. Usp. 20 899–936 (1977)
  8. V.S. Letokhov “Selective action of laser radiation on matterSov. Phys. Usp. 21 405–428 (1978)
  9. V.M. Agranovich, V.L. Ginzburg “Crystal optics with allowance for spatial dispersion; exciton theory. IISov. Phys. Usp. 5 675–710 (1963)
  10. G.N. Makarov “New results for laser isotope separation using low-energy methodsPhys. Usp. 63 245–268 (2020)
  11. B.F. Gordiets, A.I. Osipov et alVibrational relaxation in gases and molecular lasersSov. Phys. Usp. 15 759–785 (1973)
  12. G.N. Makarov “Spectroscopy of single molecules and clusters inside helium nanodroplets. Microscopic manifestation of 4He superfluidityPhys. Usp. 47 217–247 (2004)
  13. B.Ya. Zel’dovich, I.I. Sobel’man “Stimulated light scattering induced by absorptionSov. Phys. Usp. 13 307–317 (1970)
  14. G.N. Makarov “Selective processes of IR excitation and dissociation of molecules in gasdynamically cooled jets and flowsPhys. Usp. 48 37–76 (2005)
  15. A.P. Kazantsev “Resonance light pressureSov. Phys. Usp. 21 58–76 (1978)
  16. G.N. Makarov “Low energy methods of molecular laser isotope separationPhys. Usp. 58 670–700 (2015)
  17. G.N. Makarov “Control of the parameters and composition of molecular and cluster beams by means of IR lasersPhys. Usp. 61 617–644 (2018)
  18. G.N. Makarov “Towards molecular laser separation of uranium isotopesPhys. Usp. 65 531–566 (2022)
  19. B.Ya. Zel’dovich, N.F. Pilipetskii, V.V. Shkunov “Phase conjugation in stimulated scatteringSov. Phys. Usp. 25 713–737 (1982)
  20. G.N. Makarov “Studies on high-intensity pulsed molecular beams and flows interacting with a solid surfacePhys. Usp. 46 889–914 (2003)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions