Issues

 / 

1979

 / 

October

  

Reviews of topical problems


Statistics of energy spectra

When there is a stochastic disruption of the integrals of motion of a system, the corresponding quantum numbers disappear. The energy spectrum of the system becomes quasirandom. In the present paper, the quantization rules and the distribution of distances between pairs of adjacent levels are studied for this case. The probability for the appearance of very closely spaced levels is governed by a critical index which is expressed in terms of the Kolmogorov entropy for the given system (i.e., in terms of the growth rate for the instability of the classical trajectories in the corresponding phase space). Various physical situations are discussed in which a random spectral structure can arise. The capabilities of a quasiclassical analysis in the case of a stochastic disruption of the integrals of motion are discussed.

Fulltext pdf (1.6 MB)
Fulltext is also available at DOI: 10.1070/PU1979v022n10ABEH005614
PACS: 05.30.−d
DOI: 10.1070/PU1979v022n10ABEH005614
URL: https://ufn.ru/en/articles/1979/10/b/
Citation: Zaslavskii G M "Statistics of energy spectra" Sov. Phys. Usp. 22 788–803 (1979)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Заславский Г М «Статистика энергетического спектра» УФН 129 211–238 (1979); DOI: 10.3367/UFNr.0129.197910b.0211

Cited by (28) Similar articles (20) ↓

  1. G.M. Zaslavskii, B.V. Chirikov “Stochastic instability of non-linear oscillationsSov. Phys. Usp. 14 549–568 (1972)
  2. M.I. Rabinovich “Stochastic self-oscillations and turbulenceSov. Phys. Usp. 21 443–469 (1978)
  3. V.I. Tatarskii “The Wigner representation of quantum mechanicsSov. Phys. Usp. 26 311–327 (1983)
  4. G.M. Zaslavskii “Nonlinear waves and their interactionSov. Phys. Usp. 16 761–776 (1974)
  5. S.S. Abdullaev, G.M. Zaslavskii “Classical nonlinear dynamics and chaos of rays in problems of wave propagation in inhomogeneous mediaSov. Phys. Usp. 34 (8) 645–664 (1991)
  6. A.A. Migdal “Stochastic quantization of field theorySov. Phys. Usp. 29 389–411 (1986)
  7. N.B. Delone, V.P. Krainov, D.L. Shepelyanskii “Highly-excited atoms in the electromagnetic fieldSov. Phys. Usp. 26 551–572 (1983)
  8. E.L. Feinberg “Multiple generation of hadrons and statistical theorySov. Phys. Usp. 14 455–483 (1972)
  9. M.F. Sarry “Theoretical calculation of equations of state: analytical resultsPhys. Usp. 42 991–1015 (1999)
  10. G.M. Zaslavskii, R.Z. Sagdeev et alMinimal chaos, stochastic webs, and structures of quasicrystal symmetrySov. Phys. Usp. 31 887–915 (1988)
  11. A.L. Efros “Electron localization in disordered systems (the Anderson transition)Sov. Phys. Usp. 21 746–760 (1978)
  12. N.V. Karlov, A.M. Prokhorov “Laser isotope separationSov. Phys. Usp. 19 285–300 (1976)
  13. V.N. Pavlenko “Echo phenomena in plasmasSov. Phys. Usp. 26 931–951 (1983)
  14. I.M. Beterov, P.B. Lerner “Spontaneous and induced emission of a Rydberg atom in a cavitySov. Phys. Usp. 32 1084–1110 (1989)
  15. G.P. Berman, A.R. Kolovskii “Quantum chaos in interactions of multilevel quantum systems with a coherent radiation fieldSov. Phys. Usp. 35 (4) 303–326 (1992)
  16. B.M. Smirnov “Scaling method in atomic and molecular physicsPhys. Usp. 44 1229–1253 (2001)
  17. M.B. Menskii “Dissipation and decoherence in quantum systemsPhys. Usp. 46 1163–1182 (2003)
  18. M.B. Menskii “Concept of consciousness in the context of quantum mechanicsPhys. Usp. 48 389–409 (2005)
  19. M.F. Sarry “Analytical methods of calculating correlation functions in quantum statistical physicsSov. Phys. Usp. 34 (11) 958–979 (1991)
  20. A.V. Borisov, A.S. Vshivtsev et alPhotons and leptons in external fields at finite temperature and densityPhys. Usp. 40 229–255 (1997)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions