Issues

 / 

1978

 / 

July

  

Reviews of topical problems


Molecular dynamics method in statistical physics

 a,
a Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

An analysis is made of the results obtained in investigations of dense media by the molecular dynamics method. This method is based on mathematical simulation of the motion of a sufficiently large number of particles with a given interparticle interaction law. The attention is concentrated on new physical ideas about the nature of simple liquids and dense gases which have made their first appearance, have been derived, or confirmed in studies carried out by the molecular dynamics method. The principal laws of particle motion and their influence on the form of the temporal velocity correlation function are considered. Spatial and temporal correlations appearing in dense systems are studied and their role in the propagation of longitudinal and shear waves is discussed. An analysis is made of the results of molecular dynamics investigations of thermodynamic and transport properties of simple liquids and dense gases. The dynamics of a light classical particle in a dense medium of disordered heavy scatterers is discussed. Consideration is given to the close relationship between the behavior of the temporal velocity correlation function of a particle, its spatial velocity correlation function, and ``percolation'' in a random field of heavy scatterers.

Fulltext pdf (2.4 MB)
Fulltext is also available at DOI: 10.1070/PU1978v021n07ABEH005665
PACS: 34.10.+x, 05.60.+w, 05.70.−a, 46.10.+z (all)
DOI: 10.1070/PU1978v021n07ABEH005665
URL: https://ufn.ru/en/articles/1978/7/b/
Citation: Lagar’kov A N, Sergeev V M "Molecular dynamics method in statistical physics" Sov. Phys. Usp. 21 566–588 (1978)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лагарьков А Н, Сергеев В М «Метод молекулярной динамики в статистической физике» УФН 125 409–448 (1978); DOI: 10.3367/UFNr.0125.197807b.0409

Cited by (60) Similar articles (20) ↓

  1. V.V. Belyaev “Physical methods for measuring the viscosity coefficients of nematic liquid crystalsPhys. Usp. 44 255–284 (2001)
  2. I.L. Fabelinskii “Macroscopic and molecular shear viscosityPhys. Usp. 40 689–700 (1997)
  3. G.N. Sarkisov “Approximate equations of the theory of liquids in the statistical thermodynamics of classical liquid systemsPhys. Usp. 42 545–561 (1999)
  4. I.Yu. Tolstikhina, V.P. Shevelko “Atomic processes involving highly charged ionsPhys. Usp. 66 1177–1210 (2023)
  5. S.M. Stishov “The thermodynamics of melting of simple substancesSov. Phys. Usp. 17 625–643 (1975)
  6. E.E. Nikitin, B.M. Smirnov “Quasiresonant processes in slow collisionsSov. Phys. Usp. 21 95–116 (1978)
  7. S.M. Stishov “Entropy, disorder, meltingSov. Phys. Usp. 31 52–67 (1988)
  8. V.S. Vikhrenko “Theory of depolarized molecular light scatteringSov. Phys. Usp. 17 558–576 (1975)
  9. Ya.E. Geguzin, Yu.S. Kaganovskii “Diffusive mass transfer in island filmsSov. Phys. Usp. 21 611–629 (1978)
  10. A.F. Barabanov, Yu.M. Kagan et alThe Hall effect and its analogsPhys. Usp. 58 446–454 (2015)
  11. G.N. Chuev “Statistical physics of the solvated electronPhys. Usp. 42 149 (1999)
  12. V.P. Gerdt, O.V. Tarasov, D.V. Shirkov “Analytic calculations on digital computers for applications in physics and mathematicsSov. Phys. Usp. 23 59–77 (1980)
  13. É.L. Nagaev “Ferromagnetic and antiferromagnetic semiconductorsSov. Phys. Usp. 18 863–892 (1975)
  14. B.I. Ivlev, N.B. Kopnin “Theory of current states in narrow superconducting channelsSov. Phys. Usp. 27 206–227 (1984)
  15. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flowsSov. Phys. Usp. 33 (1) 1–35 (1990)
  16. A.K. Kazanskii, I.I. Fabrikant “Scattering of slow electrons by moleculesSov. Phys. Usp. 27 607–630 (1984)
  17. E.E. Nikitin, M.Ya. Ovchinnikova “Interference phenomena in atomic scatteringSov. Phys. Usp. 14 394–412 (1972)
  18. E.A. Solov’ev “Nonadiabatic transitions in atomic collisionsSov. Phys. Usp. 32 228–250 (1989)
  19. M.Yu. Kuchiev, S.A. Sheinerman “Post-collision interaction in atomic processesSov. Phys. Usp. 32 569–587 (1989)
  20. A.I. Alekseev “The application of the methods of quantum field theory in statistical physicsSov. Phys. Usp. 4 23–50 (1961)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions