Issues

 / 

1978

 / 

July

  

Reviews of topical problems


Molecular dynamics method in statistical physics

 a,
a Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

An analysis is made of the results obtained in investigations of dense media by the molecular dynamics method. This method is based on mathematical simulation of the motion of a sufficiently large number of particles with a given interparticle interaction law. The attention is concentrated on new physical ideas about the nature of simple liquids and dense gases which have made their first appearance, have been derived, or confirmed in studies carried out by the molecular dynamics method. The principal laws of particle motion and their influence on the form of the temporal velocity correlation function are considered. Spatial and temporal correlations appearing in dense systems are studied and their role in the propagation of longitudinal and shear waves is discussed. An analysis is made of the results of molecular dynamics investigations of thermodynamic and transport properties of simple liquids and dense gases. The dynamics of a light classical particle in a dense medium of disordered heavy scatterers is discussed. Consideration is given to the close relationship between the behavior of the temporal velocity correlation function of a particle, its spatial velocity correlation function, and ``percolation'' in a random field of heavy scatterers.

Fulltext pdf (2.4 MB)
Fulltext is also available at DOI: 10.1070/PU1978v021n07ABEH005665
PACS: 34.10.+x, 05.60.+w, 05.70.−a, 46.10.+z (all)
DOI: 10.1070/PU1978v021n07ABEH005665
URL: https://ufn.ru/en/articles/1978/7/b/
Citation: Lagar’kov A N, Sergeev V M "Molecular dynamics method in statistical physics" Sov. Phys. Usp. 21 566–588 (1978)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лагарьков А Н, Сергеев В М «Метод молекулярной динамики в статистической физике» УФН 125 409–448 (1978); DOI: 10.3367/UFNr.0125.197807b.0409

Cited by (58) ↓ Similar articles (20)

  1. Baer A, Wawra S E et al Small 20 (6) (2024)
  2. Yukalov V I, Yukalova E P Phys. Part. Nuclei 54 1 (2023)
  3. Korostelev S Yu, Slyadnikov E E, Turchanovsky I Yu Russ Phys J 65 1290 (2022)
  4. Odinaev S Ukr. J. Phys. 56 784 (2022)
  5. Sharipov Z A, Batgerel B et al J. Surf. Investig. 16 576 (2022)
  6. Li JinChuan, Zhu YinBo et al 154 (22) (2021)
  7. Zaripov A K Colloid J 83 436 (2021)
  8. Polyakov S V, Podryga V O Math Models Comput Simul 13 774 (2021)
  9. Polyakov S V, Polyakov S V i dr Matematicheskoe Modelirovanie 33 53 (2021)
  10. Xu X, Zhao Ya et al Phys. Chem. Chem. Phys. 22 24633 (2020)
  11. Puzynin I V, Puzynina T P et al J. Synch. Investig. 14 1342 (2020)
  12. Belousov R, Berger F, Hudspeth A J Phys. Rev. E 102 (3) (2020)
  13. Podryga V O, Vikhrov E V, Polyakov S V Math Models Comput Simul 12 210 (2020)
  14. Podryga V O, Vikhrov E V, Polyakov S V KIAM Prepr. (96) 1 (2019)
  15. Li Z, Tang L 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), (2019) p. 539
  16. Oga H, Yamaguchi Ya et al 151 (5) (2019)
  17. Podryga V O, Podryga V O i dr Matematicheskoe Modelirovanie 31 44 (2019)
  18. Lee S H Journal Of Chemistry 2019 1 (2019)
  19. Nakano H, Sasa Shin-ichi J Stat Phys 176 312 (2019)
  20. Ostrikov A N, Frolova L N et al Vestn. Voronež. Gos. Univ. Inž. Tehnol. 81 13 (2019)
  21. Belousov R, Berger F, Hudspeth A J Phys. Rev. E 99 (4) (2019)
  22. Kazakov I, Kazakov I 8 221 (2018)
  23. Kazakov I, Kazakov I 8 221 (2018)
  24. Cluster Ion-Solid Interactions (2016) p. 1
  25. Dai H, Liu Sh et al Microfluid Nanofluid 20 (10) (2016)
  26. Cluster Ion-Solid Interactions (2016) p. 69
  27. Belousov R, Cohen E G D Phys. Rev. E 94 (6) (2016)
  28. Podryga V O, Polyakov S V Math Models Comput Simul 7 456 (2015)
  29. Itami M, Sasa Shin-ichi J Stat Phys 161 532 (2015)
  30. Luo A M, Sagis L M C et al Soft Matter 11 4383 (2015)
  31. Li Zh, Bian X et al Soft Matter 10 8659 (2014)
  32. Odinaev S, Abdurasulov A Ukr. J. Phys. 58 827 (2013)
  33. Norman G E, Stegailov V V Math Models Comput Simul 5 305 (2013)
  34. Yi S D, Kim B Ju Computer Physics Communications 183 1574 (2012)
  35. Brazhkin V V, Lyapin A G et al Uspekhi Fizicheskikh Nauk 182 1137 (2012)
  36. Xiong W, Liu Je Zh et al Phys. Rev. E 84 (5) (2011)
  37. Vyzhol Yu A, Zhorova A N et al Comput. Math. And Math. Phys. 51 1756 (2011)
  38. Odinaev S, Akdodov D, Mirzoaminov Kh Journal Of Molecular Liquids 164 22 (2011)
  39. Odinaev S, Akdodov D M et al Russ. J. Phys. Chem. 84 954 (2010)
  40. Yoo Ch-D, Kim S-Ch, Lee S H Molecular Simulation 35 241 (2009)
  41. Bulletin Of The Korean Chemical Society 29 1554 (2008)
  42. Rudyak V Ya, Belkin A A et al High Temp 46 30 (2008)
  43. Odinaev S, Komilov K Russ. J. Phys. Chem. A 82 1785 (2008)
  44. Bulletin Of The Korean Chemical Society 29 1409 (2008)
  45. Odinaev S, Sharifov N Sh, Dodarbekov A Sh Russ. J. Phys. Chem. 80 570 (2006)
  46. Ould-Kaddour F, Levesque D 118 7888 (2003)
  47. Ould-Kaddour F, Levesque D Phys. Rev. E 63 (1) (2000)
  48. Bocquet L, Barrat Je-L Phys. Rev. E 49 3079 (1994)
  49. Jirsák O, Lukáš D, Charvát R Journal Of The Textile Institute 84 1 (1993)
  50. MacElroy J M D, Raghavan K 93 2068 (1990)
  51. Page M, Oran E S et al 83 5635 (1985)
  52. van Beijeren H Rev. Mod. Phys. 54 195 (1982)
  53. Grinshtein Ya D, Abrosimov B G Soviet Physics Journal 25 828 (1982)
  54. Loburets A T, Naumovets A G, Vedula Yu S Surface Science 120 347 (1982)
  55. Shumovsky A S, Yukalov V I Physica A: Statistical Mechanics And Its Applications 110 518 (1982)
  56. Gasdynamics of Detonations and Explosions (1981) p. 253
  57. Lücke M Phys. Rev. B 24 3967 (1981)
  58. Lucke M J. Phys. C: Solid State Phys. 14 L113 (1981)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions