Issues

 / 

1976

 / 

July

  

From the current literature


Astrophysical upper limits on the photon rest mass

The main ideas and methods currently used to obtain upper limits on the photon rest mass from astrophysical data are briefly reviewed. One method is based on the fact that if the photon has nonzero rest mass $m$ magnetoacoustic waves cannot have frequencies lower than a certain critical frequency, which depends on $m$. If wisps in the Crab Nebula are interpreted as magnetoacoustic waves of extremely low frequency, then the data of many-year observations of the wisps put an upper limit on m which is much better than the one established under terrestrial conditions. An error is pointed out in a different method which has been proposed in the literature in which the contribution of the energy of the galactic magnetic field (or rather, the vector potential) to the mass of Galaxy is estimated on the basis of gravitational effects. The point is that in the general theory of relativity not only energy but also pressure has a weight. In the case under consideration, these two contributions cancel each other and the galactic magnetic field cannot produce anomalously strong gravitational fields. The most stringent upper limit on the photon rest mass, $m\lesssim3\cdot10^{–60}$ g, is obtained from the analysis of the mechanical stability of magnetized gas in the galaxies with allowance for the specific pressure forces of the vector potential. This upper limit is 12 orders of magnitude better than the best upper limits obtained under terrestrial conditions. This result clearly demonstrates the effectiveness of astrophysical methods.

Fulltext pdf (324 KB)
Fulltext is also available at DOI: 10.1070/PU1976v019n07ABEH005277
PACS: 95.10.+b, 14.80.Kx, 06.20.Jr
DOI: 10.1070/PU1976v019n07ABEH005277
URL: https://ufn.ru/en/articles/1976/7/f/
Citation: Chibisov G V "Astrophysical upper limits on the photon rest mass" Sov. Phys. Usp. 19 624–626 (1976)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Чибисов Г В «Астрофизические верхние пределы нa массу покоя фотона» УФН 119 551–555 (1976); DOI: 10.3367/UFNr.0119.197607g.0551

Cited by (86) ↓ Similar articles (2)

  1. Wang B, Wei Ju-J et al J. Cosmol. Astropart. Phys. 2023 025 (2023)
  2. Marques B A, Scarpelli A P B et al Advances In High Energy Physics 2022 1 (2022)
  3. Errasti D V, Marinkovic M K Phys. Rev. D 105 (10) (2022)
  4. Wang H, Miao X, Shao L Physics Letters B 820 136596 (2021)
  5. Goray M, Annavarapu R N Optik 248 168076 (2021)
  6. Wei Ju-J, Wu X-F Front. Phys. 16 (4) (2021)
  7. Wei Ju-J, Wu X-F Res. Astron. Astrophys. 20 206 (2020)
  8. Reece M J. High Energ. Phys. 2019 (7) (2019)
  9. Burrage C, Copeland E J et al Phys. Rev. D 99 (4) (2019)
  10. Cameron R P Res. Notes AAS 3 34 (2019)
  11. Ryutov D D, Budker D, Flambaum V V ApJ 871 218 (2019)
  12. Larkoski A J Elementary Particle Physics 1 (2019)
  13. Felipe J C C, Fargnoli H G et al Int. J. Mod. Phys. A 34 1950139 (2019)
  14. Saikia D 8 (8) (2018)
  15. Wei Ju-J, Wu X-F J. Cosmol. Astropart. Phys. 2018 045 (2018)
  16. Shao L, Zhang B Phys. Rev. D 95 (12) (2017)
  17. Yang Yu-P, Zhang B ApJ 842 23 (2017)
  18. Bentum M J, Bonetti L, Spallicci A D A M Advances In Space Research 59 736 (2017)
  19. Colladay D, McDonald P et al Phys. Rev. D 95 (2) (2017)
  20. Das A K, Gamboa J et al Mod. Phys. Lett. A 32 1750175 (2017)
  21. Akarsu Ö, Arık M, Katırcı N Found Phys 47 769 (2017)
  22. Zero (2016) p. 143
  23. Chugreev Yu V, Modestov K A IJAA 06 145 (2016)
  24. Cartas-Fuentevilla R, Escalante A et al J. Cosmol. Astropart. Phys. 2016 026 (2016)
  25. Kouwn S, Oh P, Park Ch-G Phys. Rev. D 93 (8) (2016)
  26. Bonetti L, Ellis J et al Physics Letters B 757 548 (2016)
  27. Retinò A, Spallicci A D A M, Vaivads A Astroparticle Physics 82 49 (2016)
  28. Zhang B, Chai Ya-T et al Journal Of High Energy Astrophysics 11-12 20 (2016)
  29. Dolgov A D, Bravina L et al EPJ Web Of Conferences 95 03007 (2015)
  30. Alfaro J, González P, Ávila R Phys. Rev. D 91 (10) (2015)
  31. Nyambuya G G JMP 05 2111 (2014)
  32. Dolgov A D, Novikov V A Physics Letters B 732 244 (2014)
  33. Jizba P, Scardigli F Found Phys 44 512 (2014)
  34. Akarsu Ö, Arık M et al J. Cosmol. Astropart. Phys. 2014 009 (2014)
  35. Jizba P, Scardigli F J. Phys.: Conf. Ser. 504 012012 (2014)
  36. Hojman S A, Koch B Advances In High Energy Physics 2013 1 (2013)
  37. Jizba P, Scardigli F J. Phys.: Conf. Ser. 442 012054 (2013)
  38. NI WEI-TOU, MEI HSIEN-HAO, WU SHAN-JYUN Mod. Phys. Lett. A 28 1340013 (2013)
  39. Umul Yu Z Optik 124 5427 (2013)
  40. Spavieri G, Quintero J et al Eur. Phys. J. D 61 531 (2011)
  41. Kandus A, Kunze K E, Tsagas Ch G Physics Reports 505 1 (2011)
  42. Antoniadis I, Boyarsky A et al Nuclear Physics B 824 296 (2010)
  43. Goldhaber A Sch, Nieto M M Rev. Mod. Phys. 82 939 (2010)
  44. Ryutov D D Phys. Rev. Lett. 103 (20) (2009)
  45. Ferrero A, Altschul B Phys. Rev. D 80 (12) (2009)
  46. Altschul B Astroparticle Physics 29 290 (2008)
  47. Kahniashvili T, Durrer R, Maravin Yu Phys. Rev. D 78 (12) (2008)
  48. Adelberger E, Dvali G, Gruzinov A Phys. Rev. Lett. 98 (1) (2007)
  49. Ryutov D D Plasma Phys. Control. Fusion 49 B429 (2007)
  50. Gabovich A M, Gabovich N A Eur. J. Phys. 28 649 (2007)
  51. Dolgov A, Pelliccia D N Physics Letters B 650 97 (2007)
  52. Altschul B Phys. Rev. Lett. 98 (26) (2007)
  53. Tu L-Ch, Shao Ch-G et al Physics Letters A 352 267 (2006)
  54. Altschul B Phys. Rev. D 73 (3) (2006)
  55. Boyarsky A, Ruchayskiy O, Shaposhnikov M Physics Letters B 626 184 (2005)
  56. Tu L-Ch, Luo Ju, Gillies G T Rep. Prog. Phys. 68 77 (2005)
  57. Tu L-Ch, Luo Ju Metrologia 41 S136 (2004)
  58. Bartlett D F Metrologia 41 S115 (2004)
  59. Cherkas S L, Batrakov K G, Matsukevich D Phys. Rev. D 66 (6) (2002)
  60. Jackiw R Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation Chapter 9 (2002) p. 95
  61. BARTLETT D F Int. J. Mod. Phys. A 16 680 (2001)
  62. Dolgov A D Physics Reports 320 1 (1999)
  63. Bertolami O, Mota D F Physics Letters B 455 96 (1999)
  64. Raffelt G G Annu. Rev. Nucl. Part. Sci. 49 163 (1999)
  65. Ryutov D D Plasma Phys. Control. Fusion 39 A73 (1997)
  66. Nodland B, Ralston J P Phys. Rev. Lett. 78 3043 (1997)
  67. Fischbach E, Kloor H et al Phys. Rev. Lett. 73 514 (1994)
  68. Rein D Die wunderbare Händigkeit der Moleküle Chapter 6 (1993) p. 73
  69. Maruno M, Takasugi E, Tanaka M Progress Of Theoretical Physics 86 907 (1991)
  70. Takasugi E, Tanaka M Phys. Rev. D 44 3706 (1991)
  71. Carroll S M, Field G B, Jackiw R Phys. Rev. D 41 1231 (1990)
  72. Ahrens T Nuov Cim A 103 1139 (1990)
  73. Ahrens T Bell’s Theorem, Quantum Theory and Conceptions of the Universe Chapter 36 (1989) p. 223
  74. Turner M S, Widrow L M Phys. Rev. D 37 2743 (1988)
  75. Haidt D, Pietschmann H Landolt-Börnstein - Group I Elementary Particles, Nuclei And Atoms Vol. Electroweak Interactions. Experimental Facts and Theoretical Foundation4.2 Discovery of W and Z10 Chapter 15 (1988) p. 70
  76. Haidt D, Pietschmann H Landolt-Börnstein - Group I Elementary Particles, Nuclei And Atoms Vol. Electroweak Interactions. Experimental Facts and Theoretical FoundationA - F10 Chapter 52 (1988) p. 272
  77. Huang J C J. Phys. G: Nucl. Phys. 13 273 (1987)
  78. Enqvist K, Nanopoulos D V Progress In Particle And Nuclear Physics 16 1 (1986)
  79. Orito S, Yoshimura M Phys. Rev. Lett. 54 2457 (1985)
  80. Barton G, Dombey N Nature 311 336 (1984)
  81. Fargion D Physics Letters B 141 53 (1984)
  82. OKUN L B Leptons and Quarks (1984) p. 263
  83. Barrow J D, Burman R R Nature 307 14 (1984)
  84. Baldeschi M R, Gelmini G B, Ruffini R Physics Letters B 122 221 (1983)
  85. Dolgov A D, Zeldovich Ya B Rev. Mod. Phys. 53 1 (1981)
  86. Okun L B, Zeldovich Ya B Physics Letters B 78 597 (1978)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions