Issues

 / 

1976

 / 

May

  

Reviews of topical problems


Stresses produced in gasses by temperature and concentration inhomogeneities. New types of free convection

The main results of theoretical investigation of slow $(\mathbf{Re}\sim1)$ non-isothermal (temperature drop in the gas $\theta=\Delta T/T\sim1$) are reported. These flows are described by equations that differ from the classical Navier--Stokes equations for a compressible liquid in that the momentum equation contains besides the viscous-stress tensor, also a temperature-stress tensor of the same order of magnitude. The question of the influence of temperature stresses on the motion of the gas are analyzed, as are the forces acting on bodies placed in the gas. This question was first raised long ago by J. Maxwell, who used implicitly linearization in $\theta$ and reached the conclusion that the temperature stresses cause neither motion of the gas nor forces. However, when $\theta$ is not small, a new type of convection of the gas appears in the absence of external forces (e.g., of gravitation), namely, the temperature stresses cause the gas to move near uniformly heated (cooled) bodies; some examples of this convection are presented. In addition, for the case of small $\theta$, an electrostatic analogy is established, describing the force interaction between these bodies as a result of the temperature stresses. The problem of the flow around a uniformly heated sphere at $\mathbf{Re}_\infty\ll1$ (the Stokes problem) is solved: the temperature stresses exert an ever increasing influence on the resistance of the sphere with increasing sphere temperature. Analogous phenomena, produced in gas mixtures by concentration (diffusion) stresses, are indicated.

Fulltext pdf (892 KB)
Fulltext is also available at DOI: 10.1070/PU1976v019n05ABEH005261
PACS: 45.55.-d
DOI: 10.1070/PU1976v019n05ABEH005261
URL: https://ufn.ru/en/articles/1976/5/d/
Citation: Kogan M N, Galkin V S, Fridlender O G "Stresses produced in gasses by temperature and concentration inhomogeneities. New types of free convection" Sov. Phys. Usp. 19 420–428 (1976)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Коган М Н, Галкин В С, Фридлендер О Г «О напряжениях, возникающих в газах вследствие неоднородности температуры и концентраций. Новые типы свободной конвекции» УФН 119 111–125 (1976); DOI: 10.3367/UFNr.0119.197605d.0111

Cited by (104) ↓ Similar articles (20)

  1. Esposito R, Guo Ya et al Comm Pure Appl Math (2025)
  2. Jaiswal S Physics of Fluids 37 (4) (2025)
  3. Hattori M, Takata Sh Phys. Rev. Fluids 10 (7) (2025)
  4. Aristov V V, Zabelok S A, Frolova A A Uspekhi Fizicheskikh Nauk 195 (03) 276 (2025) [Aristov V V, Zabelok S A, Frolova A A Phys. Usp. 68 (03) 261 (2025)]
  5. Roohi E, Akhlaghi H, Stefanov S Advances in Direct Simulation Monte Carlo: From Micro-Scale to Rarefied Flow Phenomena Chapter 6 (2025) p. 261
  6. Esposito R, Guo Ya et al Vietnam J. Math. 52 (4) 883 (2024)
  7. Marra R Springer Proceedings In Mathematics & Statistics Vol. From Particle Systems to Partial Differential EquationsHydrodynamic Limit from the Boltzmann Equation in a Slightly Compressible Regime465 Chapter 9 (2024) p. 213
  8. Otic C J C, Yonemura Sh Physics of Fluids 34 (7) (2022)
  9. Wang X, Han F et al Eur. Phys. J. Plus 137 (4) (2022)
  10. Aristov V V, Frolova A A, Zabelok S A Smart Innovation, Systems And Technologies Vol. Smart Modelling for Engineering SystemsStudy of the Kinetic Anomalous Transport Effects in Nonequilibrium Flows215 Chapter 8 (2021) p. 89
  11. Rudyak V Ya J. Phys.: Conf. Ser. 1677 (1) 012152 (2020)
  12. Esposito R, Marra R J Stat Phys 180 (1-6) 773 (2020)
  13. Rafieenasab S, Roohi E, Teymourtash A Physics of Fluids 32 (10) (2020)
  14. Wang X, Su T et al Microsyst Nanoeng 6 (1) (2020)
  15. Pikus A, Sebastião I B et al Vacuum 161 130 (2019)
  16. Yakunchikov A, Kosyanchuk V International Journal Of Heat And Mass Transfer 138 144 (2019)
  17. Hssikou M, Baliti Ja et al Mathematical Problems In Engineering 2019 (1) (2019)
  18. Jaiswal Sh, Pikus A et al Physics of Fluids 31 (8) (2019)
  19. Jaiswal Sh, Alexeenko A A, Hu J Journal Of Computational Physics 378 178 (2019)
  20. Bobylev A V Phil. Trans. R. Soc. A. 376 (2118) 20170227 (2018)
  21. Galkin V S, Rusakov S V Fluid Dyn 53 (1) 152 (2018)
  22. Strongrich A, Pikus A et al J. Microelectromech. Syst. 26 (3) 528 (2017)
  23. Shahabi V, Baier T et al Sci Rep 7 (1) (2017)
  24. Rogozin O A Comput. Math. And Math. Phys. 57 (7) 1201 (2017)
  25. Strongrich A D, Pikus A J et al 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), (2016) p. 828
  26. Alexeenko A A, Strongrich A D et al (AIP Conference Proceedings) Vol. 1786 (2016) p. 080001
  27. Takata Sh, Yoshida T et al Physics of Fluids 28 (2) (2016)
  28. Galkin V S, Rusakov S V Journal Of Applied Mathematics And Mechanics 79 (2) 148 (2015)
  29. Rovenskaya O, Croce G Computers & Fluids 110 77 (2015)
  30. Pavlov G A EPL 110 (4) 45001 (2015)
  31. Strongrich A, Alexeenko A Applied Physics Letters 107 (19) (2015)
  32. Mohammadzadeh A, Rana A S, Struchtrup H Physics of Fluids 27 (11) (2015)
  33. Nakaye Sh, Sugimoto H et al European Journal Of Mechanics - B/Fluids 49 36 (2015)
  34. Rogozin O A Theor. Comput. Fluid Dyn. 28 (6) 573 (2014)
  35. Galkin V S, Rusakov S V Fluid Dyn 49 (1) 131 (2014)
  36. Golse F Springer Proceedings In Mathematics & Statistics Vol. From Particle Systems to Partial Differential EquationsFluid Dynamic Limits of the Kinetic Theory of Gases75 Chapter 1 (2014) p. 3
  37. Gerasimov D N, Yurin E I High Temp 52 (3) 366 (2014)
  38. Molleson G V, Stasenko A L High Temp 52 (6) 881 (2014)
  39. Rovenskaya O, Croce G Procedia Engineering 61 284 (2013)
  40. Galkin V S, Rusakov S V Fluid Dyn 47 (6) 802 (2012)
  41. Taguchi S, Aoki K J. Fluid Mech. 694 191 (2012)
  42. Arkeryd L, Esposito R et al Kinetic & Related Models 4 (1) 109 (2011)
  43. Aleksandrov V Yu Fluid Dyn 46 (5) 794 (2011)
  44. Malai N V, Ryazanov K S et al J Appl Mech Tech Phy 52 (4) 553 (2011)
  45. Kosuge Sh, Aoki K et al Physics of Fluids 23 (3) (2011)
  46. Malai N V, Shchukin E R et al Tech. Phys. 55 (3) 367 (2010)
  47. Taguchi S Physics of Fluids 22 (10) (2010)
  48. Brenner H International Journal Of Engineering Science 47 (9) 902 (2009)
  49. Brenner H Physics of Fluids 21 (5) (2009)
  50. Aleksandrov V Yu, Erofeev A I et al Fluid Dyn 43 (1) 132 (2008)
  51. Yariv E SIAM J. Appl. Math. 69 (2) 453 (2008)
  52. Larina I N, Rykov V A Fluid Dyn 43 (6) 968 (2008)
  53. Malai N V, Shchukin E R et al J Appl Mech Tech Phys 49 (1) 58 (2008)
  54. Taguchi S, Charrier P Physics of Fluids 20 (6) (2008)
  55. Aleksandrov V Yu, Fridlender O G Fluid Dyn 43 (3) 485 (2008)
  56. Tsypin V S, Vladimirov S V et al Plasma Sources Sci. Technol. 17 (1) 015006 (2008)
  57. Aleksandrov V Yu, Erofeev A I et al Fluid Dyn 43 (2) 327 (2008)
  58. Han Y-L, Phillip M E et al Nanoscale And Microscale Thermophysical Engineering 11 (1-2) 151 (2007)
  59. Aoki K, Degond P et al Physics of Fluids 19 (11) (2007)
  60. Mohan A, Brenner H SIAM J. Appl. Math. 66 (3) 787 (2006)
  61. Brenner H Physica A: Statistical Mechanics And Its Applications 370 (2) 190 (2006)
  62. Lipatov I I Fluid Dyn 41 (5) 725 (2006)
  63. Struchtrup H J Stat Phys 125 (3) 569 (2006)
  64. Slow Rarefied Flows Chapter 6 (2006) p. 131
  65. Brenner H Physica A: Statistical Mechanics And Its Applications 349 (1-2) 60 (2005)
  66. Mohan A, Brenner H Physics of Fluids 17 (3) (2005)
  67. Brenner H, Bielenberg Ja R Physica A: Statistical Mechanics And Its Applications 355 (2-4) 251 (2005)
  68. Chekmarev I B Fluid Dyn 40 (3) 486 (2005)
  69. Takata Sh Physics of Fluids 16 (7) 2182 (2004)
  70. Sone Y, Doi T Physics of Fluids 15 (6) 1405 (2003)
  71. Aleksandrov V Yu Fluid Dynamics 37 (6) 983 (2002)
  72. Cercignani C Handbook Of Mathematical Fluid Dynamics Vol. 1 (2002) p. 1
  73. Aoki K, Takata Sh, Nakanishi T Phys. Rev. E 65 (2) (2002)
  74. Beskok A 39th Aerospace Sciences Meeting and Exhibit, (2001)
  75. Takata Sh, Aoki K Transport Theory And Statistical Physics 30 (2-3) 205 (2001)
  76. Aoki K, Takata Sh et al Physics of Fluids 13 (9) 2645 (2001)
  77. Buzykin O G, Galkin V S Fluid Dynamics 36 (3) 508 (2001)
  78. Sone Y Annu. Rev. Fluid Mech. 32 (1) 779 (2000)
  79. Tsypin V S, Galvão R M O et al Phys. Rev. E 60 (4) 4754 (1999)
  80. Takata Sh, Aoki K Physics of Fluids 11 (9) 2743 (1999)
  81. Aoki K, Sone Y, Waniguchi Y Computers & Mathematics With Applications 35 (1-2) 15 (1998)
  82. Galkin V S, Shavaliev M Sh Fluid Dyn 33 (4) 469 (1998)
  83. Sone Y, Yoshimoto M Physics of Fluids 9 (11) 3530 (1997)
  84. Paltsev L A Theor Math Phys 110 (3) 364 (1997)
  85. Sone Y, Waniguchi Y, Aoki K Physics of Fluids 8 (8) 2227 (1996)
  86. Sone Y, Aoki K et al Physics of Fluids 8 (2) 628 (1996)
  87. Ohwada T Physics of Fluids 8 (8) 2153 (1996)
  88. Sone Y, Takata Sh, Sugimoto H Physics of Fluids 8 (12) 3403 (1996)
  89. Reinecke S, Kremer G M Continuum Mech. Thermodyn 8 (2) 121 (1996)
  90. Bobylev A V J Stat Phys 80 (5-6) 1063 (1995)
  91. Beresnev S, Chernyak V Physics of Fluids 7 (7) 1743 (1995)
  92. Kogan M N Progress In Aerospace Sciences 29 (4) 271 (1992)
  93. Bogolepov V V, Lipatov I I, Sokolov L A J Appl Mech Tech Phys 31 (3) 367 (1991)
  94. Sone Y Advances in Kinetic Theory and Continuum Mechanics Chapter 3 (1991) p. 19
  95. Cercignani C Mathematical Methods in Kinetic Theory Chapter 5 (1990) p. 104
  96. Aleksandrov V Yu, Fridlender O G Fluid Dyn 23 (1) 95 (1988)
  97. Asmolov E S, Boris A Yu Fluid Dyn 22 (2) 279 (1987)
  98. Bakanov S P, Vysotskij V V et al Journal of Non-Equilibrium Thermodynamics 8 (1) (1983)
  99. Rakhmatulina I KH International Journal Of Engineering Science 19 (8) 1115 (1981)
  100. Galkin V S Fluid Dyn 16 (1) 114 (1981)
  101. Rykov V A Fluid Dyn 16 (5) 795 (1981)
  102. Kogan M N USSR Computational Mathematics And Mathematical Physics 20 (6) 185 (1980)
  103. Galkin V S, Kogan M N Fluid Dyn 14 (6) 873 (1980)
  104. Bishaev A M, Rykov V A Fluid Dyn 15 (3) 460 (1980)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions