Issues

 / 

1976

 / 

May

  

Reviews of topical problems


Stresses produced in gasses by temperature and concentration inhomogeneities. New types of free convection

The main results of theoretical investigation of slow $(\mathbf{Re}\sim1)$ non-isothermal (temperature drop in the gas $\theta=\Delta T/T\sim1$) are reported. These flows are described by equations that differ from the classical Navier--Stokes equations for a compressible liquid in that the momentum equation contains besides the viscous-stress tensor, also a temperature-stress tensor of the same order of magnitude. The question of the influence of temperature stresses on the motion of the gas are analyzed, as are the forces acting on bodies placed in the gas. This question was first raised long ago by J. Maxwell, who used implicitly linearization in $\theta$ and reached the conclusion that the temperature stresses cause neither motion of the gas nor forces. However, when $\theta$ is not small, a new type of convection of the gas appears in the absence of external forces (e.g., of gravitation), namely, the temperature stresses cause the gas to move near uniformly heated (cooled) bodies; some examples of this convection are presented. In addition, for the case of small $\theta$, an electrostatic analogy is established, describing the force interaction between these bodies as a result of the temperature stresses. The problem of the flow around a uniformly heated sphere at $\mathbf{Re}_\infty\ll1$ (the Stokes problem) is solved: the temperature stresses exert an ever increasing influence on the resistance of the sphere with increasing sphere temperature. Analogous phenomena, produced in gas mixtures by concentration (diffusion) stresses, are indicated.

Fulltext pdf (892 KB)
Fulltext is also available at DOI: 10.1070/PU1976v019n05ABEH005261
PACS: 45.55.-d
DOI: 10.1070/PU1976v019n05ABEH005261
URL: https://ufn.ru/en/articles/1976/5/d/
Citation: Kogan M N, Galkin V S, Fridlender O G "Stresses produced in gasses by temperature and concentration inhomogeneities. New types of free convection" Sov. Phys. Usp. 19 420–428 (1976)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Коган М Н, Галкин В С, Фридлендер О Г «О напряжениях, возникающих в газах вследствие неоднородности температуры и концентраций. Новые типы свободной конвекции» УФН 119 111–125 (1976); DOI: 10.3367/UFNr.0119.197605d.0111

Cited by (97) ↓ Similar articles (18)

  1. Marra R Springer Proceedings In Mathematics & Statistics Vol. From Particle Systems to Partial Differential EquationsHydrodynamic Limit from the Boltzmann Equation in a Slightly Compressible Regime465 Chapter 9 (2024) p. 213
  2. Esposito R, Guo Ya et al Vietnam J. Math. 52 883 (2024)
  3. Otic C J C, Yonemura Sh 34 (7) (2022)
  4. Wang X, Han F et al Eur. Phys. J. Plus 137 (4) (2022)
  5. Aristov V V, Frolova A A, Zabelok S A Smart Innovation, Systems And Technologies Vol. Smart Modelling for Engineering SystemsStudy of the Kinetic Anomalous Transport Effects in Nonequilibrium Flows215 Chapter 8 (2021) p. 89
  6. Wang X, Su T et al Microsyst Nanoeng 6 (1) (2020)
  7. Rudyak V Ya J. Phys.: Conf. Ser. 1677 012152 (2020)
  8. Esposito R, Marra R J Stat Phys 180 773 (2020)
  9. Rafieenasab S, Roohi E, Teymourtash A 32 (10) (2020)
  10. Hssikou M, Baliti Ja et al Mathematical Problems In Engineering 2019 (1) (2019)
  11. Jaiswal Sh, Alexeenko A A, Hu J Journal Of Computational Physics 378 178 (2019)
  12. Jaiswal Sh, Pikus A et al 31 (8) (2019)
  13. Pikus A, Sebastião I B et al Vacuum 161 130 (2019)
  14. Yakunchikov A, Kosyanchuk V International Journal Of Heat And Mass Transfer 138 144 (2019)
  15. Bobylev A V Phil. Trans. R. Soc. A. 376 20170227 (2018)
  16. Galkin V S, Rusakov S V Fluid Dyn 53 152 (2018)
  17. Shahabi V, Baier T et al Sci Rep 7 (1) (2017)
  18. Strongrich A, Pikus A et al J. Microelectromech. Syst. 26 528 (2017)
  19. Rogozin O A Comput. Math. And Math. Phys. 57 1201 (2017)
  20. Alexeenko A A, Strongrich A D et al (AIP Conference Proceedings) Vol. 1786 (2016) p. 080001
  21. Takata Sh, Yoshida T et al 28 (2) (2016)
  22. Strongrich A D, Pikus A J et al 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), (2016) p. 828
  23. Rovenskaya O, Croce G Computers & Fluids 110 77 (2015)
  24. Galkin V S, Rusakov S V Journal Of Applied Mathematics And Mechanics 79 148 (2015)
  25. Strongrich A, Alexeenko A 107 (19) (2015)
  26. Pavlov G A EPL 110 45001 (2015)
  27. Nakaye Sh, Sugimoto H et al European Journal Of Mechanics - B/Fluids 49 36 (2015)
  28. Mohammadzadeh A, Rana A S, Struchtrup H 27 (11) (2015)
  29. Golse F Springer Proceedings In Mathematics & Statistics Vol. From Particle Systems to Partial Differential EquationsFluid Dynamic Limits of the Kinetic Theory of Gases75 Chapter 1 (2014) p. 3
  30. Gerasimov D N, Yurin E I High Temp 52 366 (2014)
  31. Galkin V S, Rusakov S V Fluid Dyn 49 131 (2014)
  32. Rogozin O A Theor. Comput. Fluid Dyn. 28 573 (2014)
  33. Molleson G V, Stasenko A L High Temp 52 881 (2014)
  34. Rovenskaya O, Croce G Procedia Engineering 61 284 (2013)
  35. Galkin V S, Rusakov S V Fluid Dyn 47 802 (2012)
  36. Taguchi S, Aoki K J. Fluid Mech. 694 191 (2012)
  37. Malai N V, Ryazanov K S et al J Appl Mech Tech Phy 52 553 (2011)
  38. Aleksandrov V Yu Fluid Dyn 46 794 (2011)
  39. Kosuge Sh, Aoki K et al 23 (3) (2011)
  40. Arkeryd L, Esposito R et al 4 109 (2011)
  41. Taguchi S 22 (10) (2010)
  42. Malai N V, Shchukin E R et al Tech. Phys. 55 367 (2010)
  43. Brenner H 21 (5) (2009)
  44. Brenner H International Journal Of Engineering Science 47 902 (2009)
  45. Yariv E SIAM J. Appl. Math. 69 453 (2008)
  46. Malai N V, Shchukin E R et al J Appl Mech Tech Phys 49 58 (2008)
  47. Aleksandrov V Yu, Fridlender O G Fluid Dyn 43 485 (2008)
  48. Tsypin V S, Vladimirov S V et al Plasma Sources Sci. Technol. 17 015006 (2008)
  49. Aleksandrov V Yu, Erofeev A I et al Fluid Dyn 43 327 (2008)
  50. Aleksandrov V Yu, Erofeev A I et al Fluid Dyn 43 132 (2008)
  51. Larina I N, Rykov V A Fluid Dyn 43 968 (2008)
  52. Taguchi S, Charrier P 20 (6) (2008)
  53. Aoki K, Degond P et al 19 (11) (2007)
  54. Han Y-L, Phillip M E et al Nanoscale And Microscale Thermophysical Engineering 11 151 (2007)
  55. Mohan A, Brenner H SIAM J. Appl. Math. 66 787 (2006)
  56. Slow Rarefied Flows Chapter 6 (2006) p. 131
  57. Lipatov I I Fluid Dyn 41 725 (2006)
  58. Brenner H Physica A: Statistical Mechanics And Its Applications 370 190 (2006)
  59. Struchtrup H J Stat Phys 125 569 (2006)
  60. Chekmarev I B Fluid Dyn 40 486 (2005)
  61. Brenner H, Bielenberg Ja R Physica A: Statistical Mechanics And Its Applications 355 251 (2005)
  62. Brenner H Physica A: Statistical Mechanics And Its Applications 349 60 (2005)
  63. Mohan A, Brenner H 17 (3) (2005)
  64. Takata Sh 16 2182 (2004)
  65. Sone Y, Doi T 15 1405 (2003)
  66. Aoki K, Takata Sh, Nakanishi T Phys. Rev. E 65 (2) (2002)
  67. Cercignani C Handbook Of Mathematical Fluid Dynamics Vol. 1 (2002) p. 1
  68. Takata Sh, Aoki K Transport Theory And Statistical Physics 30 205 (2001)
  69. Aoki K, Takata Sh et al 13 2645 (2001)
  70. Beskok A 39th Aerospace Sciences Meeting and Exhibit, (2001)
  71. Sone Y Annu. Rev. Fluid Mech. 32 779 (2000)
  72. Tsypin V S, Galvão R M O et al Phys. Rev. E 60 4754 (1999)
  73. Takata Sh, Aoki K 11 2743 (1999)
  74. Galkin V S, Shavaliev M Sh Fluid Dyn 33 469 (1998)
  75. Aoki K, Sone Y, Waniguchi Y Computers & Mathematics With Applications 35 15 (1998)
  76. Sone Y, Yoshimoto M 9 3530 (1997)
  77. Paltsev L A Theor Math Phys 110 364 (1997)
  78. Sone Y, Aoki K et al 8 628 (1996)
  79. Ohwada T 8 2153 (1996)
  80. Sone Y, Takata Sh, Sugimoto H 8 3403 (1996)
  81. Sone Y, Waniguchi Y, Aoki K 8 2227 (1996)
  82. Reinecke S, Kremer G M Continuum Mech. Thermodyn 8 121 (1996)
  83. Bobylev A V J Stat Phys 80 1063 (1995)
  84. Beresnev S, Chernyak V 7 1743 (1995)
  85. Kogan M N Progress In Aerospace Sciences 29 271 (1992)
  86. Sone Y Advances in Kinetic Theory and Continuum Mechanics Chapter 3 (1991) p. 19
  87. Bogolepov V V, Lipatov I I, Sokolov L A J Appl Mech Tech Phys 31 367 (1991)
  88. Cercignani C Mathematical Methods in Kinetic Theory Chapter 5 (1990) p. 104
  89. Aleksandrov V Yu, Fridlender O G Fluid Dyn 23 95 (1988)
  90. Asmolov E S, Boris A Yu Fluid Dyn 22 279 (1987)
  91. Bakanov S P, Vysotskij V V et al 8 (1) (1983)
  92. Rakhmatulina I KH International Journal Of Engineering Science 19 1115 (1981)
  93. Rykov V A Fluid Dyn 16 795 (1981)
  94. Galkin V S Fluid Dyn 16 114 (1981)
  95. Galkin V S, Kogan M N Fluid Dyn 14 873 (1980)
  96. Bishaev A M, Rykov V A Fluid Dyn 15 460 (1980)
  97. Kogan M N USSR Computational Mathematics And Mathematical Physics 20 185 (1980)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions