Issues

 / 

1976

 / 

May

  

Reviews of topical problems


Electromotive force produced by shock compression of a substance

 a,
a Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, Moscow, 127412, Russian Federation

The phenomena accompanying shock polarization of linear dielectrics and depolarization of nonlinear dielectrics are considered. It is established that the appearance of an emf on the front of a shock wave is a characteristic of a large class of substances, such as linear and nonlinear dielectrics, semiconductors, and metals. It is shown that the emf produced by shock compression of ionic crystals, polar dielectrics, semiconductors, and a number of metals is due to shock polarization. Diffusion of carriers from the front of a shock wave is observed in shock-compressed bismuth, europium, and aluminum. Shock compression of polarization nonlinear dielectrics leads to a stronger effect, namely to the onset of a depolarization emf. The presented phenomenological description of shock polarization is in good agreement with experiment.

Fulltext pdf (2.1 MB)
Fulltext is also available at DOI: 10.1070/PU1976v019n05ABEH005260
PACS: 62.50.+p
DOI: 10.1070/PU1976v019n05ABEH005260
URL: https://ufn.ru/en/articles/1976/5/c/
Citation: Mineev V N, Ivanov A G "Electromotive force produced by shock compression of a substance" Sov. Phys. Usp. 19 400–419 (1976)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Минеев В Н, Иванов А Г «Э. Д. С., возникающая при ударном сжатии вещества» УФН 119 75–109 (1976); DOI: 10.3367/UFNr.0119.197605c.0075

Cited by (51) ↓ Similar articles (20)

  1. Tripathy A, Ramadoss A Flexoelectricity in Ceramics and their Application (2024) p. 45
  2. Borisenok V A Russ. J. Phys. Chem. B 18 924 (2024)
  3. Csernak G, Miklos A et al Journal Of Thermal Stresses 47 1425 (2024)
  4. Hu T, Deng Q et al 122 (5) (2017)
  5. Surkov V, Hayakawa M Ultra and Extremely Low Frequency Electromagnetic Fields Chapter 10 (2014) p. 373
  6. Jang D-G, Choi S-H et al The Transactions Of The Korean Institute Of Electrical Engineers 62 1408 (2013)
  7. Bivin Yu K Tech. Phys. 56 1527 (2011)
  8. Gilev S D Combust Explos Shock Waves 47 375 (2011)
  9. Simonov I V, Smirnov I M Tech. Phys. 56 226 (2011)
  10. Churmaev O M, Chursin A S Mech. Solids 45 757 (2010)
  11. Bivin Yu K Tech. Phys. 55 812 (2010)
  12. Shkuratov S I, Baird Ja et al IEEE Trans. Plasma Sci. 38 1856 (2010)
  13. Devyatkin E A, Simonov I V, Sirotin A A Mech. Solids 44 131 (2009)
  14. Dremin A N Russ. J. Phys. Chem. B 3 223 (2009)
  15. Martuzans B, Skryl Yu 45 33 (2008)
  16. Borisenok V A, Bel’skii V M Russ. J. Phys. Chem. B 2 187 (2008)
  17. Andreev S N, Il’ichev N N et al Laser Phys. 17 1041 (2007)
  18. Skryl Yu, Belak A A, Kuklja M M Phys. Rev. B 76 (6) (2007)
  19. Batkov Yu V, Borisenok V A et al Material Properties under Intensive Dynamic Loading Shock Wave And High Pressure Phenomena Chapter 3 (2006) p. 73
  20. Soloviev S P, Sweeney J J J. Geophys. Res. 110 (B1) (2005)
  21. Frid V, Goldbaum J et al 97 (1) (2005)
  22. Agafonov V R, Anufrienko V B et al At Energy 98 207 (2005)
  23. Sud’enkov Yu V Tech. Phys. 46 1588 (2001)
  24. Demidkov S V J Eng Phys Thermophys 70 433 (1997)
  25. Royce E B, Keeler R N, Mitchell A C Combust Explos Shock Waves 32 121 (1996)
  26. Sklarczyk C, Winkler S, Thielicke B Materialwissenschaft Werkst 27 559 (1996)
  27. Borisenok V A, Morozov V A et al Ferroelectrics Letters Section 14 127 (1992)
  28. Gogulya M F, Brazhnikov M A Combust Explos Shock Waves 27 424 (1991)
  29. Brovkin Yu V, Dunin S Z et al Soviet Mining Science 26 522 (1990)
  30. Enikeev F U, Kubarev S I, Ponomarev O A Combust Explos Shock Waves 23 440 (1988)
  31. Sirotkin V K, Surkov V V J Appl Mech Tech Phys 27 495 (1987)
  32. Shunin V M, Antipenko A G et al Combust Explos Shock Waves 22 111 (1986)
  33. Surkov V V J Appl Mech Tech Phys 27 25 (1986)
  34. Leung K P, Doukas A G et al Phys. Rev. B 31 8329 (1985)
  35. Fortov V E Experientia Supplementum Vol. Transport Properties of Dense PlasmasExperiment and Physical Models of a Strongly Nonideal Plasma47 Chapter 1 (1984) p. 1
  36. Ebeling W, Fortov V E et al Experientia Supplementum Vol. Transport Properties of Dense PlasmasReferences47 Chapter 7 (1984) p. 168
  37. Akishin A I, Goncharov Yu S et al Radiation Physics And Chemistry (1977) 23 319 (1984)
  38. Novikov V V, Mineev V N Combust Explos Shock Waves 19 336 (1983)
  39. Harris P, Presles H N Journal Of Energetic Materials 1 45 (1983)
  40. Harris P, Presles H-N 77 5157 (1982)
  41. Graham R A Shock Waves and High-Strain-Rate Phenomena in Metals Chapter 23 (1981) p. 375
  42. Zlobin A M, Kashaev Yu G, Novikov S A J Appl Mech Tech Phys 22 232 (1981)
  43. Novitskii E Z, Korotchenko M V et al Combust Explos Shock Waves 16 93 (1980)
  44. Kepler R G, Anderson R A Critical Reviews In Solid State And Materials Sciences 9 399 (1980)
  45. Graham R A Molecular and Chemical Physics, Chemistry, Biological Effects, Geo and Planetary Sciences, New Resources, Dynamic Pressures, High Pressure Safety (1980) p. 1032
  46. Novitsky E Z, Sadunov V D, Karpenko G Ya Ferroelectrics 23 19 (1980)
  47. Novitskii E Z, Sadunov V D, Trishchenko T V Combust Explos Shock Waves 16 82 (1980)
  48. Davison L, Graham R A Physics Reports 55 255 (1979)
  49. Novitskii E Z, Sadunov V D, Karpenko G Ya Combust Explos Shock Waves 14 505 (1978)
  50. Yakushev V V Combust Explos Shock Waves 14 131 (1978)
  51. Kosolobov S N, Sokolovsky R I, Tyurin Y L Optics Communications 24 355 (1978)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions